These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1268 related items for PubMed ID: 19546490
1. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering. Cade NI, Ritman-Meer T, Kwaka K, Richards D. Nanotechnology; 2009 Jul 15; 20(28):285201. PubMed ID: 19546490 [Abstract] [Full Text] [Related]
6. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates. Itoh T, Yoshikawa H, Yoshida K, Biju V, Ishikawa M. J Chem Phys; 2009 Jun 07; 130(21):214706. PubMed ID: 19508086 [Abstract] [Full Text] [Related]
8. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays. Dai ZG, Xiao XH, Zhang YP, Ren F, Wu W, Zhang SF, Zhou J, Mei F, Jiang CZ. Nanotechnology; 2012 Aug 24; 23(33):335701. PubMed ID: 22842646 [Abstract] [Full Text] [Related]
9. Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays. Henson J, Dimakis E, DiMaria J, Li R, Minissale S, Dal Negro L, Moustakas TD, Paiella R. Opt Express; 2010 Sep 27; 18(20):21322-9. PubMed ID: 20941028 [Abstract] [Full Text] [Related]
10. Modifying photoisomerization efficiency by metallic nanostructures. Xu S, Shan J, Shi W, Liu L, Xu L. Opt Express; 2011 Jun 20; 19(13):12336-41. PubMed ID: 21716470 [Abstract] [Full Text] [Related]
11. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K, Choi JY, Lee HB, Shin KS. J Chem Phys; 2011 Sep 28; 135(12):124705. PubMed ID: 21974550 [Abstract] [Full Text] [Related]
12. Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths. Rycenga M, Hou KK, Cobley CM, Schwartz AG, Camargo PH, Xia Y. Phys Chem Chem Phys; 2009 Jul 28; 11(28):5903-8. PubMed ID: 19588011 [Abstract] [Full Text] [Related]
13. Gold nanoring trimers: a versatile structure for infrared sensing. Teo SL, Lin VK, Marty R, Large N, Llado EA, Arbouet A, Girard C, Aizpurua J, Tripathy S, Mlayah A. Opt Express; 2010 Oct 11; 18(21):22271-82. PubMed ID: 20941128 [Abstract] [Full Text] [Related]
14. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. McFarland AD, Young MA, Dieringer JA, Van Duyne RP. J Phys Chem B; 2005 Jun 09; 109(22):11279-85. PubMed ID: 16852377 [Abstract] [Full Text] [Related]
15. Chemically selective sensing through layer-by-layer incorporation of biorecognition into thin film substrates for surface-enhanced resonance Raman scattering. Pieczonka NP, Goulet PJ, Aroca RF. J Am Chem Soc; 2006 Oct 04; 128(39):12626-7. PubMed ID: 17002338 [Abstract] [Full Text] [Related]
16. Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate. Chu Y, Zhu W, Wang D, Crozier KB. Opt Express; 2011 Oct 10; 19(21):20054-68. PubMed ID: 21997016 [Abstract] [Full Text] [Related]
17. Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy. Qi ZM, Xia S, Zou H. Nanotechnology; 2009 Jun 24; 20(25):255702. PubMed ID: 19491460 [Abstract] [Full Text] [Related]