These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The role of first formant information in simulated electro-acoustic hearing. Verschuur C, Boland C, Frost E, Constable J. J Acoust Soc Am; 2013 Jun; 133(6):4279-89. PubMed ID: 23742378 [Abstract] [Full Text] [Related]
4. Low-frequency speech cues and simulated electric-acoustic hearing. Brown CA, Bacon SP. J Acoust Soc Am; 2009 Mar; 125(3):1658-65. PubMed ID: 19275323 [Abstract] [Full Text] [Related]
5. Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing. Carroll J, Tiaden S, Zeng FG. J Acoust Soc Am; 2011 Oct; 130(4):2054-62. PubMed ID: 21973360 [Abstract] [Full Text] [Related]
6. The use of frequency compression by cochlear implant recipients with postoperative acoustic hearing. McDermott H, Henshall K. J Am Acad Audiol; 2010 Jun; 21(6):380-9. PubMed ID: 20701835 [Abstract] [Full Text] [Related]
7. Beneficial acoustic speech cues for cochlear implant users with residual acoustic hearing. Visram AS, Azadpour M, Kluk K, McKay CM. J Acoust Soc Am; 2012 May; 131(5):4042-50. PubMed ID: 22559377 [Abstract] [Full Text] [Related]
8. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Rader T, Fastl H, Baumann U. Ear Hear; 2013 May; 34(3):324-32. PubMed ID: 23263408 [Abstract] [Full Text] [Related]
9. [Simulation of speech perception with cochlear implants : Influence of frequency and level of fundamental frequency components with electronic acoustic stimulation]. Rader T, Fastl H, Baumann U. HNO; 2017 Mar; 65(3):237-242. PubMed ID: 27670421 [Abstract] [Full Text] [Related]
10. Shifting Fundamental Frequency in Simulated Electric-Acoustic Listening: Effects of F0 Variation. Brown CA, Helms Tillery K, Apoux F, Doyle NM, Bacon SP. Ear Hear; 2016 Mar; 37(1):e18-25. PubMed ID: 26565786 [Abstract] [Full Text] [Related]
11. Auditory training in patients with unilateral cochlear implant and contralateral acoustic stimulation. Zhang T, Dorman MF, Fu QJ, Spahr AJ. Ear Hear; 2012 Mar; 33(6):e70-9. PubMed ID: 22622705 [Abstract] [Full Text] [Related]
12. Does acoustic fundamental frequency information enhance cochlear implant performance? Mulhern L, Cullington H. Cochlear Implants Int; 2014 Mar; 15(2):101-8. PubMed ID: 24597637 [Abstract] [Full Text] [Related]
13. Combined electric acoustic stimulation with the PULSARCI(100) implant system using the FLEX(EAS) electrode array. Helbig S, Van de Heyning P, Kiefer J, Baumann U, Kleine-Punte A, Brockmeier H, Anderson I, Gstoettner W. Acta Otolaryngol; 2011 Jun; 131(6):585-95. PubMed ID: 21281057 [Abstract] [Full Text] [Related]
14. Shifting fundamental frequency in simulated electric-acoustic listening. Brown CA, Scherrer NM, Bacon SP. J Acoust Soc Am; 2010 Sep; 128(3):1272-9. PubMed ID: 20815462 [Abstract] [Full Text] [Related]
15. Information from the voice fundamental frequency (F0) region accounts for the majority of the benefit when acoustic stimulation is added to electric stimulation. Zhang T, Dorman MF, Spahr AJ. Ear Hear; 2010 Feb; 31(1):63-9. PubMed ID: 20050394 [Abstract] [Full Text] [Related]
16. The relative phonetic contributions of a cochlear implant and residual acoustic hearing to bimodal speech perception. Sheffield BM, Zeng FG. J Acoust Soc Am; 2012 Jan; 131(1):518-30. PubMed ID: 22280613 [Abstract] [Full Text] [Related]
17. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing. Zamaninezhad L, Hohmann V, Büchner A, Schädler MR, Jürgens T. Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372 [Abstract] [Full Text] [Related]
18. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison. Rader T, Adel Y, Fastl H, Baumann U. Ear Hear; 2015 Feb; 36(6):e314-25. PubMed ID: 25989069 [Abstract] [Full Text] [Related]