These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
555 related items for PubMed ID: 19548762
1. The impact of hydration water on the dynamics of side chains of hydrophobic peptides: from dry powder to highly concentrated solutions. Russo D, Teixeira J, Ollivier J. J Chem Phys; 2009 Jun 21; 130(23):235101. PubMed ID: 19548762 [Abstract] [Full Text] [Related]
2. Water hydrogen bond analysis on hydrophilic and hydrophobic biomolecule sites. Russo D, Ollivier J, Teixeira J. Phys Chem Chem Phys; 2008 Aug 28; 10(32):4968-74. PubMed ID: 18688541 [Abstract] [Full Text] [Related]
3. Effects of hydration water on protein methyl group dynamics in solution. Russo D, Hura GL, Copley JR. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr 28; 75(4 Pt 1):040902. PubMed ID: 17500858 [Abstract] [Full Text] [Related]
4. Molecular origin and hydration dependence of protein anharmonicity: an elastic neutron scattering study. Schiró G, Caronna C, Natali F, Cupane A. Phys Chem Chem Phys; 2010 Sep 21; 12(35):10215-20. PubMed ID: 20668739 [Abstract] [Full Text] [Related]
5. Single particle and collective hydration dynamics for hydrophobic and hydrophilic peptides. Murarka RK, Head-Gordon T. J Chem Phys; 2007 Jun 07; 126(21):215101. PubMed ID: 17567218 [Abstract] [Full Text] [Related]
6. Separable cooperative and localized translational motions of water confined by a chemically heterogeneous environment. Malardier-Jugroot C, Head-Gordon T. Phys Chem Chem Phys; 2007 Apr 28; 9(16):1962-71. PubMed ID: 17431524 [Abstract] [Full Text] [Related]
7. Dynamics of the three methionyl side chains of Streptomyces subtilisin inhibitor. Deuterium NMR studies in solution and in the solid state. Tamura A, Matsushita M, Naito A, Kojima S, Miura KI, Akasaka K. Protein Sci; 1996 Jan 28; 5(1):127-39. PubMed ID: 8771205 [Abstract] [Full Text] [Related]
8. Thermal signature of hydrophobic hydration dynamics. Qvist J, Halle B. J Am Chem Soc; 2008 Aug 06; 130(31):10345-53. PubMed ID: 18624406 [Abstract] [Full Text] [Related]
9. Evidence of dynamical constraints imposed by water organization around a bio-hydrophobic interface. Russo D, Gonzalez MA, Pellegrini E, Combet J, Ollivier J, Teixeira J. J Phys Chem B; 2013 Mar 14; 117(10):2829-36. PubMed ID: 23414252 [Abstract] [Full Text] [Related]
10. Solvent and lipid dynamics of hydrated lipid bilayers by incoherent quasielastic neutron scattering. Swenson J, Kargl F, Berntsen P, Svanberg C. J Chem Phys; 2008 Jul 28; 129(4):045101. PubMed ID: 18681680 [Abstract] [Full Text] [Related]
11. Direct evidence of the amino acid side chain and backbone contributions to protein anharmonicity. Schiró G, Caronna C, Natali F, Cupane A. J Am Chem Soc; 2010 Feb 03; 132(4):1371-6. PubMed ID: 20067251 [Abstract] [Full Text] [Related]
12. Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics. Caronna C, Natali F, Cupane A. Biophys Chem; 2005 Aug 01; 116(3):219-25. PubMed ID: 15908102 [Abstract] [Full Text] [Related]
13. Temperature- and hydration-dependent protein dynamics in photosystem II of green plants studied by quasielastic neutron scattering. Pieper J, Hauss T, Buchsteiner A, Baczyński K, Adamiak K, Lechner RE, Renger G. Biochemistry; 2007 Oct 09; 46(40):11398-409. PubMed ID: 17867656 [Abstract] [Full Text] [Related]
14. Dielectric relaxation of aqueous solutions of hydrophilic versus amphiphilic peptides. Murarka RK, Head-Gordon T. J Phys Chem B; 2008 Jan 10; 112(1):179-86. PubMed ID: 18069810 [Abstract] [Full Text] [Related]
15. Quasielastic neutron scattering study of hydrogen motions in an aqueous poly(vinyl methyl ether) solution. Capponi S, Arbe A, Cerveny S, Busselez R, Frick B, Embs JP, Colmenero J. J Chem Phys; 2011 May 28; 134(20):204906. PubMed ID: 21639476 [Abstract] [Full Text] [Related]
16. Hydration dynamics near a model protein surface. Russo D, Hura G, Head-Gordon T. Biophys J; 2004 Mar 28; 86(3):1852-62. PubMed ID: 14990511 [Abstract] [Full Text] [Related]
17. Aqueous peptides as experimental models for hydration water dynamics near protein surfaces. Malardier-Jugroot C, Johnson ME, Murarka RK, Head-Gordon T. Phys Chem Chem Phys; 2008 Aug 28; 10(32):4903-8. PubMed ID: 18688534 [Abstract] [Full Text] [Related]
18. Vibrational analysis of amino acids and short peptides in hydrated media. IV. Amino acids with hydrophobic side chains: L-alanine, L-valine, and L-isoleucine. Hernández B, Pflüger F, Nsangou M, Ghomi M. J Phys Chem B; 2009 Mar 12; 113(10):3169-78. PubMed ID: 19708268 [Abstract] [Full Text] [Related]
19. Further evidence that interfacial water is the main "driving force" of protein dynamics: a neutron scattering study on perdeuterated C-phycocyanin. Combet S, Zanotti JM. Phys Chem Chem Phys; 2012 Apr 14; 14(14):4927-34. PubMed ID: 22388956 [Abstract] [Full Text] [Related]
20. [Influence of hydrophobicity of amino acid side chains on volume and viscosity properties of their aqueous solutions]. Tiunina EIu, Badelin VG. Biofizika; 2009 Apr 14; 54(5):835-40. PubMed ID: 19894622 [Abstract] [Full Text] [Related] Page: [Next] [New Search]