These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 19550709

  • 1. Optofluidic trapping and transport on solid core waveguides within a microfluidic device.
    Schmidt BS, Yang AH, Erickson D, Lipson M.
    Opt Express; 2007 Oct 29; 15(22):14322-34. PubMed ID: 19550709
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Optofluidic ring resonator switch for optical particle transport.
    Yang AH, Erickson D.
    Lab Chip; 2010 Mar 21; 10(6):769-74. PubMed ID: 20221566
    [Abstract] [Full Text] [Related]

  • 7. Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration.
    Loozen GB, Karuna A, Fanood MMR, Schreuder E, Caro J.
    Beilstein J Nanotechnol; 2020 Mar 21; 11():829-842. PubMed ID: 32551208
    [Abstract] [Full Text] [Related]

  • 8. Flexible optofluidic waveguide platform with multi-dimensional reconfigurability.
    Parks JW, Schmidt H.
    Sci Rep; 2016 Sep 06; 6():33008. PubMed ID: 27597164
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels.
    Testa G, Persichetti G, Bernini R.
    Micromachines (Basel); 2022 Jun 28; 13(7):. PubMed ID: 35888845
    [Abstract] [Full Text] [Related]

  • 11. Forces and transport velocities for a particle in a slot waveguide.
    Yang AH, Lerdsuchatawanich T, Erickson D.
    Nano Lett; 2009 Mar 28; 9(3):1182-8. PubMed ID: 19178156
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices.
    Hsu LC, Chen TC, Yang YT, Huang CY, Shen DW, Chen YT, Lee MC.
    Lab Chip; 2013 Mar 21; 13(6):1151-5. PubMed ID: 23364290
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Optofluidic Particle Manipulation Platform with Nanomembrane.
    Walker ZJ, Wells T, Belliston E, Romney S, Walker SB, Sampad MJN, Saiduzzaman SM, Losakul R, Schmidt H, Hawkins AR.
    Micromachines (Basel); 2022 Apr 30; 13(5):. PubMed ID: 35630187
    [Abstract] [Full Text] [Related]

  • 17. Optofluidic Particle Manipulation: Optical Trapping in a Thin-Membrane Microchannel.
    Walker ZJ, Wells T, Belliston E, Walker SB, Zeller C, Sampad MJN, Saiduzzaman SM, Schmidt H, Hawkins AR.
    Biosensors (Basel); 2022 Aug 27; 12(9):. PubMed ID: 36140075
    [Abstract] [Full Text] [Related]

  • 18. A hybrid silicon-PDMS optofluidic platform for sensing applications.
    Testa G, Persichetti G, Sarro PM, Bernini R.
    Biomed Opt Express; 2014 Feb 01; 5(2):417-26. PubMed ID: 24575337
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.