These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1150 related items for PubMed ID: 19553350
1. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H, Lee HB. Am J Physiol Renal Physiol; 2009 Sep; 297(3):F729-39. PubMed ID: 19553350 [Abstract] [Full Text] [Related]
2. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. Yoshikawa M, Hishikawa K, Marumo T, Fujita T. J Am Soc Nephrol; 2007 Jan; 18(1):58-65. PubMed ID: 17135397 [Abstract] [Full Text] [Related]
3. Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat. Khan S, Jena G, Tikoo K. Exp Mol Pathol; 2015 Apr; 98(2):230-9. PubMed ID: 25576297 [Abstract] [Full Text] [Related]
4. Role of reactive oxygen species in transforming growth factor-beta1-induced extracellular matrix accumulation in renal tubular epithelial cells. Rhyu DY, Park J, Sharma BR, Ha H. Transplant Proc; 2012 Apr; 44(3):625-8. PubMed ID: 22483454 [Abstract] [Full Text] [Related]
5. Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide. Yuan P, Xue H, Zhou L, Qu L, Li C, Wang Z, Ni J, Yu C, Yao T, Huang Y, Wang R, Lu L. Nephrol Dial Transplant; 2011 Jul; 26(7):2119-26. PubMed ID: 21208996 [Abstract] [Full Text] [Related]
6. Effects of histone deacetylase inhibitor on extracellular matrix production in human nasal polyp organ cultures. Cho JS, Moon YM, Park IH, Um JY, Kang JH, Kim TH, Lee SH, Kang HJ, Lee HM. Am J Rhinol Allergy; 2013 Jan; 27(1):18-23. PubMed ID: 23406592 [Abstract] [Full Text] [Related]
7. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Wang X, Liu J, Zhen J, Zhang C, Wan Q, Liu G, Wei X, Zhang Y, Wang Z, Han H, Xu H, Bao C, Song Z, Zhang X, Li N, Yi F. Kidney Int; 2014 Oct; 86(4):712-25. PubMed ID: 24717296 [Abstract] [Full Text] [Related]
8. Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Park JH, Hwang I, Hwang SH, Han H, Ha H. Diabetes Res Clin Pract; 2012 Dec; 98(3):465-73. PubMed ID: 23026513 [Abstract] [Full Text] [Related]
9. Positive feedback loop between plasminogen activator inhibitor-1 and transforming growth factor-beta1 during renal fibrosis in diabetes. Seo JY, Park J, Yu MR, Kim YS, Ha H, Lee HB. Am J Nephrol; 2009 Dec; 30(6):481-90. PubMed ID: 19786738 [Abstract] [Full Text] [Related]
10. Downregulation of apoptosis and modulation of TGF-β1 by sodium selenate prevents streptozotocin-induced diabetic rat renal impairment. Roy S, Dontamalla SK, Mondru AK, Sannigrahi S, Veerareddy PR. Biol Trace Elem Res; 2011 Jan; 139(1):55-71. PubMed ID: 20174975 [Abstract] [Full Text] [Related]
11. An imbalance between matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 contributes to the development of early diabetic nephropathy. Han SY, Jee YH, Han KH, Kang YS, Kim HK, Han JY, Kim YS, Cha DR. Nephrol Dial Transplant; 2006 Sep; 21(9):2406-16. PubMed ID: 16728425 [Abstract] [Full Text] [Related]
12. Erythropoietin decreases renal fibrosis in mice with ureteral obstruction: role of inhibiting TGF-beta-induced epithelial-to-mesenchymal transition. Park SH, Choi MJ, Song IK, Choi SY, Nam JO, Kim CD, Lee BH, Park RW, Park KM, Kim YJ, Kim IS, Kwon TH, Kim YL. J Am Soc Nephrol; 2007 May; 18(5):1497-507. PubMed ID: 17389738 [Abstract] [Full Text] [Related]
13. Delayed treatment with human umbilical cord blood-derived stem cells attenuates diabetic renal injury. Park JH, Park J, Hwang SH, Han H, Ha H. Transplant Proc; 2012 May; 44(4):1123-6. PubMed ID: 22564642 [Abstract] [Full Text] [Related]
14. β-Casomorphin-7 attenuates the development of nephropathy in type I diabetes via inhibition of epithelial-mesenchymal transition of renal tubular epithelial cells. Zhang W, Miao J, Ma C, Han D, Zhang Y. Peptides; 2012 Aug; 36(2):186-91. PubMed ID: 22687367 [Abstract] [Full Text] [Related]
15. [Effect of selective cyclooxygenase -2 inhibitor on the renal lesion of streptozotocin-induced diabetic rats and its possible mechanism]. Zuo Y, Gu Y, Ma J, Lin S. Zhonghua Yi Xue Za Zhi; 2002 Feb 25; 82(4):239-43. PubMed ID: 11953170 [Abstract] [Full Text] [Related]
16. Epigenetic regulation of myofibroblast differentiation and extracellular matrix production in nasal polyp-derived fibroblasts. Cho JS, Moon YM, Park IH, Um JY, Moon JH, Park SJ, Lee SH, Kang HJ, Lee HM. Clin Exp Allergy; 2012 Jun 25; 42(6):872-82. PubMed ID: 22239687 [Abstract] [Full Text] [Related]
17. Angiotensin AT1 receptor activation mediates high glucose-induced epithelial-mesenchymal transition in renal proximal tubular cells. Zhou L, Xue H, Yuan P, Ni J, Yu C, Huang Y, Lu LM. Clin Exp Pharmacol Physiol; 2010 Sep 25; 37(9):e152-7. PubMed ID: 20590668 [Abstract] [Full Text] [Related]
18. Thyroid hormone ameliorates diabetic nephropathy in a mouse model of type II diabetes. Lin Y, Sun Z. J Endocrinol; 2011 May 25; 209(2):185-91. PubMed ID: 21307121 [Abstract] [Full Text] [Related]
19. Esculetin induced changes in Mmp13 and Bmp6 gene expression and histone H3 modifications attenuate development of glomerulosclerosis in diabetic rats. Surse VM, Gupta J, Tikoo K. J Mol Endocrinol; 2011 Jun 25; 46(3):245-54. PubMed ID: 21450970 [Abstract] [Full Text] [Related]
20. Class I HDACs specifically regulate E-cadherin expression in human renal epithelial cells. Choi SY, Kee HJ, Kurz T, Hansen FK, Ryu Y, Kim GR, Lin MQ, Jin L, Piao ZH, Jeong MH. J Cell Mol Med; 2016 Dec 25; 20(12):2289-2298. PubMed ID: 27420561 [Abstract] [Full Text] [Related] Page: [Next] [New Search]