These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1243 related items for PubMed ID: 19555750
1. Nanoparticles for direct nose-to-brain delivery of drugs. Mistry A, Stolnik S, Illum L. Int J Pharm; 2009 Sep 08; 379(1):146-57. PubMed ID: 19555750 [Abstract] [Full Text] [Related]
2. Is nose-to-brain transport of drugs in man a reality? Illum L. J Pharm Pharmacol; 2004 Jan 08; 56(1):3-17. PubMed ID: 14979996 [Abstract] [Full Text] [Related]
3. Nanosized Drug Delivery Systems for Direct Nose to Brain Targeting: A Review. Phukan K, Nandy M, Sharma RB, Sharma HK. Recent Pat Drug Deliv Formul; 2016 Jan 08; 10(2):156-64. PubMed ID: 26996366 [Abstract] [Full Text] [Related]
5. Can nasal drug delivery bypass the blood-brain barrier?: questioning the direct transport theory. Merkus FW, van den Berg MP. Drugs R D; 2007 Jan 08; 8(3):133-44. PubMed ID: 17472409 [Abstract] [Full Text] [Related]
7. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Pardeshi CV, Belgamwar VS. Expert Opin Drug Deliv; 2013 Jul 08; 10(7):957-72. PubMed ID: 23586809 [Abstract] [Full Text] [Related]
8. Modulation of brain delivery and copulation by intranasal apomorphine hydrochloride. Lu W, Jiang W, Chen J, Yin M, Wang Z, Jiang X. Int J Pharm; 2008 Feb 12; 349(1-2):196-205. PubMed ID: 17904315 [Abstract] [Full Text] [Related]
10. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium. Mistry A, Stolnik S, Illum L. Mol Pharm; 2015 Aug 03; 12(8):2755-66. PubMed ID: 25997083 [Abstract] [Full Text] [Related]
11. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Juillerat-Jeanneret L. Drug Discov Today; 2008 Dec 03; 13(23-24):1099-106. PubMed ID: 18848640 [Abstract] [Full Text] [Related]
12. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. Mistry A, Glud SZ, Kjems J, Randel J, Howard KA, Stolnik S, Illum L. J Drug Target; 2009 Aug 03; 17(7):543-52. PubMed ID: 19530905 [Abstract] [Full Text] [Related]
14. Direct transport of VEGF from the nasal cavity to brain. Yang JP, Liu HJ, Cheng SM, Wang ZL, Cheng X, Yu HX, Liu XF. Neurosci Lett; 2009 Jan 09; 449(2):108-11. PubMed ID: 18996442 [Abstract] [Full Text] [Related]
15. Nanobiotechnology-based drug delivery to the central nervous system. Jain KK. Neurodegener Dis; 2007 Jan 09; 4(4):287-91. PubMed ID: 17627131 [Abstract] [Full Text] [Related]
16. Targeting the brain--surmounting or bypassing the blood-brain barrier. Potschka H. Handb Exp Pharmacol; 2010 Jan 09; (197):411-31. PubMed ID: 20217538 [Abstract] [Full Text] [Related]
20. Mathematical Modeling and Simulation to Investigate the CNS Transport Characteristics of Nanoemulsion-Based Drug Delivery Following Intranasal Administration. Kadakia E, Bottino D, Amiji M. Pharm Res; 2019 Mar 28; 36(5):75. PubMed ID: 30923914 [Abstract] [Full Text] [Related] Page: [Next] [New Search]