These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


329 related items for PubMed ID: 195584

  • 1. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN, Hansford RG.
    Biochem J; 1977 May 15; 164(2):305-22. PubMed ID: 195584
    [Abstract] [Full Text] [Related]

  • 2. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate 2-oxoglutarate and malate in flight muscle and isolated mitochondria.
    Johnson RN, Hansford RG.
    Biochem J; 1975 Mar 15; 146(3):527-35. PubMed ID: 1147907
    [Abstract] [Full Text] [Related]

  • 3. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.
    Bulos BA, Thomas BJ, Shukla SP, Sacktor B.
    Arch Biochem Biophys; 1984 Nov 01; 234(2):382-93. PubMed ID: 6497378
    [Abstract] [Full Text] [Related]

  • 4. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG.
    Biochem J; 1975 Mar 01; 146(3):537-47. PubMed ID: 167720
    [Abstract] [Full Text] [Related]

  • 5. Some properties of pyruvate and 2-oxoglutarate oxidation by blowfly flight-muscle mitochondria.
    Hansford RG.
    Biochem J; 1972 Mar 01; 127(1):271-83. PubMed ID: 4342212
    [Abstract] [Full Text] [Related]

  • 6. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Sorgato MC, Ferguson SJ, Kell DB, John P.
    Biochem J; 1978 Jul 15; 174(1):237-56. PubMed ID: 212021
    [Abstract] [Full Text] [Related]

  • 7. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X, Sibille B, Devin A, Piquet MA, Espié P, Rigoulet M.
    Mol Cell Biochem; 1998 Jul 15; 184(1-2):53-65. PubMed ID: 9746312
    [Abstract] [Full Text] [Related]

  • 8. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE, Ferguson SJ.
    Eur J Biochem; 1983 May 02; 132(2):425-31. PubMed ID: 6301834
    [Abstract] [Full Text] [Related]

  • 9. Energy-conserving reactions in phosphorylating electron-transport particles from Nitrobacter winogradskyi. Activation of nitrite oxidation by the electrical component of the protonmotive force.
    Cobley JG.
    Biochem J; 1976 Jun 15; 156(3):481-91. PubMed ID: 182152
    [Abstract] [Full Text] [Related]

  • 10. Characterisation of the control of respiration in potato tuber mitochondria using the top-down approach of metabolic control analysis.
    Kesseler A, Diolez P, Brinkmann K, Brand MD.
    Eur J Biochem; 1992 Dec 15; 210(3):775-84. PubMed ID: 1483462
    [Abstract] [Full Text] [Related]

  • 11. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW.
    Am J Physiol; 1995 Jan 15; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [Abstract] [Full Text] [Related]

  • 12. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory.
    Hafner RP, Brown GC, Brand MD.
    Eur J Biochem; 1990 Mar 10; 188(2):313-9. PubMed ID: 2156698
    [Abstract] [Full Text] [Related]

  • 13. The control of tricarboxylate-cycle of oxidations in blowfly flight muscle. The steady-state concentrations of coenzyme A, acetyl-coenzyme A and succinyl-coenzyme A in flight muscle and isolated mitochondria.
    Hansford RG.
    Biochem J; 1974 Sep 10; 142(3):509-19. PubMed ID: 4464839
    [Abstract] [Full Text] [Related]

  • 14. Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status.
    Hafner RP, Nobes CD, McGown AD, Brand MD.
    Eur J Biochem; 1988 Dec 15; 178(2):511-8. PubMed ID: 2850181
    [Abstract] [Full Text] [Related]

  • 15. The effect of the protonmotive force on the redox state of mitochondrial cytochromes.
    Azzone GF, Schmehl I, Canton M, Luvisetto S.
    Biochim Biophys Acta; 1994 Aug 30; 1187(2):140-4. PubMed ID: 8075108
    [Abstract] [Full Text] [Related]

  • 16. Substrates of oxidative metabolism in dipteran flight muscle.
    Bursell E.
    Comp Biochem Physiol B; 1975 Oct 15; 52(2):235-8. PubMed ID: 170034
    [No Abstract] [Full Text] [Related]

  • 17. The protonmotive force in phosphorylating membrane vesicles from Paracoccus denitrificans. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Kell DB, John P, Ferguson SJ.
    Biochem J; 1978 Jul 15; 174(1):257-66. PubMed ID: 212022
    [Abstract] [Full Text] [Related]

  • 18. Changes in intramitochondrial adenine nucleotides in blowfly flight-muscle mitochondria.
    Danks SM, Chappell JB.
    Biochem J; 1974 Aug 15; 142(2):353-8. PubMed ID: 4374197
    [Abstract] [Full Text] [Related]

  • 19. Mitochondrial glycerol phosphate oxidation is modulated by adenylates through allosteric regulation of cytochrome c oxidase activity in mosquito flight muscle.
    Gaviraghi A, Correa Soares JBR, Mignaco JA, Fontes CFL, Oliveira MF.
    Insect Biochem Mol Biol; 2019 Nov 15; 114():103226. PubMed ID: 31446033
    [Abstract] [Full Text] [Related]

  • 20. The effects of acetylcolletotrichin on the mitochondrial respiratory chain.
    Foucher B, Chappell JB, McGivan JD.
    Biochem J; 1974 Mar 15; 138(3):415-23. PubMed ID: 4372992
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.