These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1344 related items for PubMed ID: 19560207
1. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking. Murray IC, Fleck BW, Brash HM, Macrae ME, Tan LL, Minns RA. Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207 [Abstract] [Full Text] [Related]
2. Variability in patients with glaucomatous visual field damage is reduced using size V stimuli. Wall M, Kutzko KE, Chauhan BC. Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):426-35. PubMed ID: 9040476 [Abstract] [Full Text] [Related]
7. Saccadic Vector Optokinetic Perimetry (SVOP): a novel technique for automated static perimetry in children using eye tracking. Murray I, Perperidis A, Brash H, Cameron L, McTrusty A, Fleck B, Minns R. Annu Int Conf IEEE Eng Med Biol Soc; 2013 Feb; 2013():3186-9. PubMed ID: 24110405 [Abstract] [Full Text] [Related]
8. Visual field assessment in glaucoma: comparative evaluation of manual kinetic Goldmann perimetry and automated static perimetry. Agarwal HC, Gulati V, Sihota R. Indian J Ophthalmol; 2000 Dec; 48(4):301-6. PubMed ID: 11340889 [Abstract] [Full Text] [Related]
9. Feasibility and outcome of automated static perimetry in children using continuous light increment perimetry (CLIP) and fast threshold strategy. Wabbels BK, Wilscher S. Acta Ophthalmol Scand; 2005 Dec; 83(6):664-9. PubMed ID: 16396642 [Abstract] [Full Text] [Related]
11. Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry. Springer C, Bültmann S, Völcker HE, Rohrschneider K. Ophthalmology; 2005 May; 112(5):848-54. PubMed ID: 15878065 [Abstract] [Full Text] [Related]
12. Correlation of the binocular visual field with patient assessment of vision. Jampel HD, Friedman DS, Quigley H, Miller R. Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1059-67. PubMed ID: 11923247 [Abstract] [Full Text] [Related]
14. Component perimetry: a fast method to detect visual field defects caused by brain lesions. Bachmann G, Fahle M. Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2870-86. PubMed ID: 10967040 [Abstract] [Full Text] [Related]
17. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs. Bengtsson B, Heijl A. Ophthalmology; 2006 Jul; 113(7):1092-7. PubMed ID: 16815399 [Abstract] [Full Text] [Related]
18. Swedish interactive thresholding algorithm fast for following visual fields in prepubertal idiopathic intracranial hypertension. Stiebel-Kalish H, Lusky M, Yassur Y, Kalish Y, Shuper A, Erlich R, Lubman S, Snir M. Ophthalmology; 2004 Sep; 111(9):1673-5. PubMed ID: 15350321 [Abstract] [Full Text] [Related]
19. Perimetry while moving the eyes: implications for the variability of visual field defects. Toepfer A, Kasten E, Guenther T, Sabel BA. J Neuroophthalmol; 2008 Dec; 28(4):308-19. PubMed ID: 19145132 [Abstract] [Full Text] [Related]
20. [A comparative analysis of standard automated perimetry and short wavelength automated perimetry in early diagnosis of glaucoma]. Chiseliţă D, Crenguţa MI, Danielescu C, Mihaela NM. Oftalmologia; 2006 Dec; 50(2):94-102. PubMed ID: 16927766 [Abstract] [Full Text] [Related] Page: [Next] [New Search]