These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
355 related items for PubMed ID: 19560494
21. Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. Verhoef S, Ruijssenaars HJ, de Bont JA, Wery J. J Biotechnol; 2007 Oct 15; 132(1):49-56. PubMed ID: 17900735 [Abstract] [Full Text] [Related]
22. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. Cakir T, Kirdar B, Onsan ZI, Ulgen KO, Nielsen J. BMC Syst Biol; 2007 Mar 27; 1():18. PubMed ID: 17408508 [Abstract] [Full Text] [Related]
23. Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Kurbatov L, Albrecht D, Herrmann H, Petruschka L. Environ Microbiol; 2006 Mar 27; 8(3):466-78. PubMed ID: 16478453 [Abstract] [Full Text] [Related]
24. Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. del Castillo T, Ramos JL. J Bacteriol; 2007 Sep 27; 189(18):6602-10. PubMed ID: 17616587 [Abstract] [Full Text] [Related]
25. Solvent-impregnated resins as an in situ product recovery tool for phenol recovery from Pseudomonas putida S12TPL fermentations. van den Berg C, Wierckx N, Vente J, Bussmann P, de Bont J, van der Wielen L. Biotechnol Bioeng; 2008 Jun 15; 100(3):466-72. PubMed ID: 18438869 [Abstract] [Full Text] [Related]
26. Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose. Latrach Tlemçani L, Corroler D, Barillier D, Mosrati R. Arch Microbiol; 2008 Aug 15; 190(2):141-50. PubMed ID: 18493743 [Abstract] [Full Text] [Related]
30. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. Hjersted JL, Henson MA. IET Syst Biol; 2009 May 15; 3(3):167-79. PubMed ID: 19449977 [Abstract] [Full Text] [Related]
31. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R. Biotechnol Prog; 2004 May 15; 20(6):1623-33. PubMed ID: 15575692 [Abstract] [Full Text] [Related]
32. Probing the proteome response to toluene exposure in the solvent tolerant Pseudomonas putida S12. Wijte D, van Baar BL, Heck AJ, Altelaar AF. J Proteome Res; 2011 Feb 04; 10(2):394-403. PubMed ID: 20979388 [Abstract] [Full Text] [Related]
33. Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86. Basu A, Phale PS. FEMS Microbiol Lett; 2006 Jun 04; 259(2):311-6. PubMed ID: 16734795 [Abstract] [Full Text] [Related]
34. Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. Chavarría M, Kleijn RJ, Sauer U, Pflüger-Grau K, de Lorenzo V. mBio; 2012 Jun 04; 3(2):. PubMed ID: 22434849 [Abstract] [Full Text] [Related]
35. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum--over expression and modification of G6P dehydrogenase. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. J Biotechnol; 2007 Oct 31; 132(2):99-109. PubMed ID: 17624457 [Abstract] [Full Text] [Related]
36. [Metabolic flux analysis of L-valine fermentation in Corynebacterium glutamicum]. Li XM, Li NQ, Yang Y, Jiang XL, Qiu YJ, Zhang XY. Sheng Wu Gong Cheng Xue Bao; 2004 May 31; 20(3):403-7. PubMed ID: 15971614 [Abstract] [Full Text] [Related]
37. Metabolic flux analysis using stoichiometric models for Aspergillus niger: comparison under glucoamylase-producing and non-producing conditions. Melzer G, Dalpiaz A, Grote A, Kucklick M, Göcke Y, Jonas R, Dersch P, Franco-Lara E, Nörtemann B, Hempel DC. J Biotechnol; 2007 Dec 01; 132(4):405-17. PubMed ID: 17931730 [Abstract] [Full Text] [Related]
38. Metabolic and transcriptional response of recombinant Escherichia coli to elevated dissolved carbon dioxide concentrations. Baez A, Flores N, Bolívar F, Ramírez OT. Biotechnol Bioeng; 2009 Sep 01; 104(1):102-10. PubMed ID: 19452501 [Abstract] [Full Text] [Related]