These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
301 related items for PubMed ID: 19566284
1. Stochastic vagal modulation of cardiac pacemaking may lead to erroneous identification of cardiac "chaos". Zhang JQ, Holden AV, Monfredi O, Boyett MR, Zhang H. Chaos; 2009 Jun; 19(2):028509. PubMed ID: 19566284 [Abstract] [Full Text] [Related]
6. Modification of DiFrancesco-Noble equations to simulate the effects of vagal stimulation on in vivo mammalian sinoatrial node electrical activity. Dokos S, Celler BG, Lovell NH. Ann Biomed Eng; 1993 Jan 07; 21(4):321-35. PubMed ID: 8214817 [Abstract] [Full Text] [Related]
8. [The synchronizing interaction and mechanism of the formation of the common rhythm of the cardiac pacemaker. I. The modeling of the interaction of 2 pacemaker elements]. Mazurov ME, Sukhova GS. Nauchnye Doki Vyss Shkoly Biol Nauki; 1991 Jan 07; (1):140-9. PubMed ID: 2054416 [Abstract] [Full Text] [Related]
9. Modulation of rabbit sinoatrial node activation sequence by acetylcholine and isoproterenol investigated with optical mapping technique. Abramochkin DV, Kuzmin VS, Sukhova GS, Rosenshtraukh LV. Acta Physiol (Oxf); 2009 Aug 07; 196(4):385-94. PubMed ID: 19302260 [Abstract] [Full Text] [Related]
10. [The effect of fluctuations of the electric potential on the activity of SAN cells]. Aliev RR. Biofizika; 2006 Aug 07; 51(6):1087-91. PubMed ID: 17175919 [Abstract] [Full Text] [Related]
11. In vivo direct monitoring of vagal acetylcholine release to the sinoatrial node. Shimizu S, Akiyama T, Kawada T, Shishido T, Yamazaki T, Kamiya A, Mizuno M, Sano S, Sugimachi M. Auton Neurosci; 2009 Jun 15; 148(1-2):44-9. PubMed ID: 19278905 [Abstract] [Full Text] [Related]
12. Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node. Jalife J, Slenter VA, Salata JJ, Michaels DC. Circ Res; 1983 Jun 15; 52(6):642-56. PubMed ID: 6861283 [Abstract] [Full Text] [Related]
13. Shift of leading pacemaker site during reflex vagal stimulation and altered electrical source-to-sink balance. Ashton JL, Trew ML, LeGrice IJ, Paterson DJ, Paton JF, Gillis AM, Smaill BH. J Physiol; 2019 Jul 15; 597(13):3297-3313. PubMed ID: 31087820 [Abstract] [Full Text] [Related]
14. Chaotic activity in a mathematical model of the vagally driven sinoatrial node. Michaels DC, Chialvo DR, Matyas EP, Jalife J. Circ Res; 1989 Nov 15; 65(5):1350-60. PubMed ID: 2805248 [Abstract] [Full Text] [Related]
15. RGS4 regulates parasympathetic signaling and heart rate control in the sinoatrial node. Cifelli C, Rose RA, Zhang H, Voigtlaender-Bolz J, Bolz SS, Backx PH, Heximer SP. Circ Res; 2008 Aug 29; 103(5):527-35. PubMed ID: 18658048 [Abstract] [Full Text] [Related]
16. A nonlinear analytical model of the autonomic basis of heart rate variability (HRV). Becker DJ, Mihran RT. Biomed Sci Instrum; 2000 Aug 29; 36():81-6. PubMed ID: 10834213 [Abstract] [Full Text] [Related]
19. Mathematical model of dependence of heart rate on tissue concentration of acetylcholine. Dexter F, Saidel GM, Levy MN, Rudy Y. Am J Physiol; 1989 Feb 29; 256(2 Pt 2):H520-6. PubMed ID: 2916685 [Abstract] [Full Text] [Related]
20. [Computer simulation of the sinoatrial node pacemaker synchronization in response to periodic stimulation of the vagus nerve]. Aliev RR. Biofizika; 2008 Feb 29; 53(6):1125-8. PubMed ID: 19137701 [Abstract] [Full Text] [Related] Page: [Next] [New Search]