These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images. Chatzizisis YS, Koutkias VG, Toutouzas K, Giannopoulos A, Chouvarda I, Riga M, Antoniadis AP, Cheimariotis G, Doulaverakis C, Tsampoulatidis I, Bouki K, Kompatsiaris I, Stefanadis C, Maglaveras N, Giannoglou GD. Int J Cardiol; 2014 Apr 01; 172(3):568-80. PubMed ID: 24529948 [Abstract] [Full Text] [Related]
3. Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction. Cheng J, Tao D, Quan Y, Wong DW, Cheung GC, Akiba M, Liu J. IEEE Trans Med Imaging; 2016 Oct 01; 35(10):2270-2279. PubMed ID: 27116734 [Abstract] [Full Text] [Related]
4. Speckle attenuation by adaptive singular value shrinking with generalized likelihood matching in optical coherence tomography. Chen H, Fu S, Wang H, Lv H, Zhang C. J Biomed Opt; 2018 Mar 01; 23(3):1-8. PubMed ID: 29595018 [Abstract] [Full Text] [Related]
5. Automated layer segmentation of optical coherence tomography images. Lu S, Cheung CY, Liu J, Lim JH, Leung CK, Wong TY. IEEE Trans Biomed Eng; 2010 Oct 01; 57(10):2605-8. PubMed ID: 20595078 [Abstract] [Full Text] [Related]
6. Learnable despeckling framework for optical coherence tomography images. Adabi S, Rashedi E, Clayton A, Mohebbi-Kalkhoran H, Chen XW, Conforto S, Nasiriavanaki M. J Biomed Opt; 2018 Jan 01; 23(1):1-12. PubMed ID: 29368458 [Abstract] [Full Text] [Related]
7. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading. Celi S, Berti S. Med Image Anal; 2014 Oct 01; 18(7):1157-68. PubMed ID: 25077844 [Abstract] [Full Text] [Related]
8. Intra-retinal layer segmentation in optical coherence tomography images. Mishra A, Wong A, Bizheva K, Clausi DA. Opt Express; 2009 Dec 21; 17(26):23719-28. PubMed ID: 20052083 [Abstract] [Full Text] [Related]
9. Speckle-constrained variational methods for image restoration in optical coherence tomography. Yin D, Gu Y, Xue P. J Opt Soc Am A Opt Image Sci Vis; 2013 May 01; 30(5):878-85. PubMed ID: 23695318 [Abstract] [Full Text] [Related]
10. Enhancement and bias removal of optical coherence tomography images: An iterative approach with adaptive bilateral filtering. Sudeep PV, Issac Niwas S, Palanisamy P, Rajan J, Xiaojun Y, Wang X, Luo Y, Liu L. Comput Biol Med; 2016 Apr 01; 71():97-107. PubMed ID: 26907572 [Abstract] [Full Text] [Related]
11. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images. Zhang X, Li L, Zhu F, Hou W, Chen X. J Biomed Opt; 2014 Jun 01; 19(6):066005. PubMed ID: 24919448 [Abstract] [Full Text] [Related]
12. Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain. Baran U, Zhu W, Choi WJ, Omori M, Zhang W, Alkayed NJ, Wang RK. J Neurosci Methods; 2016 Sep 01; 270():132-137. PubMed ID: 27328369 [Abstract] [Full Text] [Related]
13. Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography. Zaitsev VY, Matveyev AL, Matveev LA, Gelikonov GV, Gelikonov VM, Vitkin A. J Biomed Opt; 2015 Jul 01; 20(7):75006. PubMed ID: 26172612 [Abstract] [Full Text] [Related]
14. Combining region-based and imprecise boundary-based cues for interactive medical image segmentation. Jones JL, Xie X, Essa E. Int J Numer Method Biomed Eng; 2014 Dec 01; 30(12):1649-66. PubMed ID: 25377853 [Abstract] [Full Text] [Related]
15. DHNet: High-resolution and hierarchical network for cross-domain OCT speckle noise reduction. Zhou Y, Li J, Wang M, Peng Y, Chen Z, Zhu W, Shi F, Wang L, Wang T, Yao C, Chen X. Med Phys; 2022 Sep 01; 49(9):5914-5928. PubMed ID: 35611567 [Abstract] [Full Text] [Related]
16. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images. Chen Q, Niu S, Yuan S, Fan W, Liu Q. Med Phys; 2016 Apr 01; 43(4):1649. PubMed ID: 27036564 [Abstract] [Full Text] [Related]
17. Statistical Models of Signal and Noise and Fundamental Limits of Segmentation Accuracy in Retinal Optical Coherence Tomography. Dubose TB, Cunefare D, Cole E, Milanfar P, Izatt JA, Farsiu S. IEEE Trans Med Imaging; 2018 Sep 01; 37(9):1978-1988. PubMed ID: 29990154 [Abstract] [Full Text] [Related]
18. Denoising and 4D visualization of OCT images. Gargesha M, Jenkins MW, Rollins AM, Wilson DL. Opt Express; 2008 Aug 04; 16(16):12313-33. PubMed ID: 18679509 [Abstract] [Full Text] [Related]
19. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. Yazdanpanah A, Hamarneh G, Smith BR, Sarunic MV. IEEE Trans Med Imaging; 2011 Feb 04; 30(2):484-96. PubMed ID: 20952331 [Abstract] [Full Text] [Related]
20. Real-Time Automatic Segmentation of Optical Coherence Tomography Volume Data of the Macular Region. Tian J, Varga B, Somfai GM, Lee WH, Smiddy WE, DeBuc DC. PLoS One; 2015 Feb 04; 10(8):e0133908. PubMed ID: 26258430 [Abstract] [Full Text] [Related] Page: [Next] [New Search]