These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Teste FP, Simard SW. Oecologia; 2008 Nov; 158(2):193-203. PubMed ID: 18781333 [Abstract] [Full Text] [Related]
4. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Schoonmaker AL, Teste FP, Simard SW, Guy RD. Oecologia; 2007 Dec; 154(3):455-66. PubMed ID: 17885766 [Abstract] [Full Text] [Related]
5. The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress. Dučić T, Parladé J, Polle A. Mycorrhiza; 2008 Jul; 18(5):227-239. PubMed ID: 18437431 [Abstract] [Full Text] [Related]
6. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Teste FP, Simard SW, Durall DM, Guy RD, Jones MD, Schoonmaker AL. Ecology; 2009 Oct; 90(10):2808-22. PubMed ID: 19886489 [Abstract] [Full Text] [Related]
7. Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings. Smit J, Van Den Driessche R. Tree Physiol; 1992 Dec; 11(4):401-10. PubMed ID: 14969945 [Abstract] [Full Text] [Related]
10. Ectomycorrhizas and tree seedling establishment are strongly influenced by forest edge proximity but not soil inoculum. Grove S, Saarman NP, Gilbert GS, Faircloth B, Haubensak KA, Parker IM. Ecol Appl; 2019 Apr; 29(3):e01867. PubMed ID: 30710404 [Abstract] [Full Text] [Related]
11. Forest encroachment into a Californian grassland: examining the simultaneous effects of facilitation and competition on tree seedling recruitment. Kennedy PG, Sousa WP. Oecologia; 2006 Jun; 148(3):464-74. PubMed ID: 16496180 [Abstract] [Full Text] [Related]
12. Methods to control ectomycorrhizal colonization: effectiveness of chemical and physical barriers. Teste FP, Karst J, Jones MD, Simard SW, Durall DM. Mycorrhiza; 2006 Dec; 17(1):51-65. PubMed ID: 17106724 [Abstract] [Full Text] [Related]
13. Family variation in nutritional and growth traits in Douglas-fir seedlings. Hawkins BJ. Tree Physiol; 2007 Jun; 27(6):911-9. PubMed ID: 17331909 [Abstract] [Full Text] [Related]
14. Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers. Reininger V, Sieber TN. PLoS One; 2012 Jun; 7(8):e42865. PubMed ID: 22900058 [Abstract] [Full Text] [Related]
15. Effects of artificial and western spruce budworm (Lepidoptera: Tortricidae) defoliation on growth and biomass allocation of Douglas-fir seedlings. Chen Z, Kolb TE, Clancy KM. J Econ Entomol; 2002 Jun; 95(3):587-94. PubMed ID: 12076004 [Abstract] [Full Text] [Related]
16. Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests. Wen Z, Shi L, Tang Y, Hong L, Xue J, Xing J, Chen Y, Nara K. Mycorrhiza; 2018 Jan; 28(1):49-58. PubMed ID: 28942552 [Abstract] [Full Text] [Related]
18. Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentrations. Ahonen-Jonnarth U, Göransson A, Finlay RD. Tree Physiol; 2003 Feb; 23(3):157-67. PubMed ID: 12566266 [Abstract] [Full Text] [Related]