These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs. Colotti G, Baiocco P, Fiorillo A, Boffi A, Poser E, Chiaro FD, Ilari A. Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416 [Abstract] [Full Text] [Related]
5. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Schmidt A, Krauth-Siegel RL. Curr Top Med Chem; 2002 Nov; 2(11):1239-59. PubMed ID: 12171583 [Abstract] [Full Text] [Related]
6. Targeting Trypanothione Metabolism in Trypanosomatids. González-Montero MC, Andrés-Rodríguez J, García-Fernández N, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, García-Estrada C. Molecules; 2024 May 09; 29(10):. PubMed ID: 38792079 [Abstract] [Full Text] [Related]
7. Redox enzyme engineering: conversion of human glutathione reductase into a trypanothione reductase. Bradley M, Bücheler US, Walsh CT. Biochemistry; 1991 Jun 25; 30(25):6124-7. PubMed ID: 2059620 [Abstract] [Full Text] [Related]
8. Rationally designed selective inhibitors of trypanothione reductase. Phenothiazines and related tricyclics as lead structures. Benson TJ, McKie JH, Garforth J, Borges A, Fairlamb AH, Douglas KT. Biochem J; 1992 Aug 15; 286 ( Pt 1)(Pt 1):9-11. PubMed ID: 1355650 [Abstract] [Full Text] [Related]
9. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases. Battista T, Colotti G, Ilari A, Fiorillo A. Molecules; 2020 Apr 21; 25(8):. PubMed ID: 32326257 [Abstract] [Full Text] [Related]
10. Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity. Stoll VS, Simpson SJ, Krauth-Siegel RL, Walsh CT, Pai EF. Biochemistry; 1997 May 27; 36(21):6437-47. PubMed ID: 9174360 [Abstract] [Full Text] [Related]
13. Enzymes of parasite thiol metabolism as drug targets. Krauth-Siegel RL, Coombs GH. Parasitol Today; 1999 Oct 27; 15(10):404-9. PubMed ID: 10481152 [Abstract] [Full Text] [Related]
14. Trypanothione metabolism and rational approaches to drug design. Fairlamb AH. Biochem Soc Trans; 1990 Oct 27; 18(5):717-20. PubMed ID: 2083656 [No Abstract] [Full Text] [Related]
15. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Leroux AE, Krauth-Siegel RL. Mol Biochem Parasitol; 2016 Oct 27; 206(1-2):67-74. PubMed ID: 26592324 [Abstract] [Full Text] [Related]
16. Parasite-specific trypanothione reductase as a drug target molecule. Krauth-Siegel RL, Inhoff O. Parasitol Res; 2003 Jun 27; 90 Suppl 2():S77-85. PubMed ID: 12709793 [Abstract] [Full Text] [Related]
17. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Krauth-Siegel RL, Comini MA. Biochim Biophys Acta; 2008 Nov 27; 1780(11):1236-48. PubMed ID: 18395526 [Abstract] [Full Text] [Related]
18. Future prospects for the chemotherapy of human trypanosomiasis. 1. Novel approaches to the chemotherapy of trypanosomiasis. Fairlamb AH. Trans R Soc Trop Med Hyg; 1990 Nov 27; 84(5):613-7. PubMed ID: 2278053 [Abstract] [Full Text] [Related]
19. Active site of trypanothione reductase. A target for rational drug design. Hunter WN, Bailey S, Habash J, Harrop SJ, Helliwell JR, Aboagye-Kwarteng T, Smith K, Fairlamb AH. J Mol Biol; 1992 Sep 05; 227(1):322-33. PubMed ID: 1522596 [Abstract] [Full Text] [Related]
20. Design, synthesis and biological evaluation of new potent 5-nitrofuryl derivatives as anti-Trypanosoma cruzi agents. Studies of trypanothione binding site of trypanothione reductase as target for rational design. Aguirre G, Cabrera E, Cerecetto H, Di Maio R, González M, Seoane G, Duffaut A, Denicola A, Gil MJ, Martínez-Merino V. Eur J Med Chem; 2004 May 05; 39(5):421-31. PubMed ID: 15110968 [Abstract] [Full Text] [Related] Page: [Next] [New Search]