These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
262 related items for PubMed ID: 19580169
1. [Model equations for graviosmotic flows in double-membrane system]. Slezak A. Polim Med; 2009; 39(1):3-15. PubMed ID: 19580169 [Abstract] [Full Text] [Related]
2. Membrane transport of the non-homogeneous non-electrolyte solutions: mathematical model based on the Kedem-Katchalsky and Rayleigh equations. Slezak A. Polim Med; 2007; 37(1):57-66. PubMed ID: 17703724 [Abstract] [Full Text] [Related]
3. Gravitational effects in the passive osmotic flows across polymeric membrane of electrolytic solutions. Slezak A, Jasik-Slezak J, Sieroń A. Polim Med; 2000; 30(1-2):21-44. PubMed ID: 11064886 [Abstract] [Full Text] [Related]
4. Estimation of thickness of concentration boundary layers by osmotic volume flux determination. Jasik-Ślęzak JS, Olszówka KM, Slęzak A. Gen Physiol Biophys; 2011 Jun; 30(2):186-95. PubMed ID: 21613674 [Abstract] [Full Text] [Related]
5. [Nonequilibrium thermodynamics model equations of the volume flow through double-membrane system with concentration polarization]. Slezak A. Polim Med; 2010 Jun; 40(1):15-24. PubMed ID: 20446525 [Abstract] [Full Text] [Related]
6. [Mathematical model of the membrane transport of ternary non-electrolyte solutions: the role of volume flows in creation of concentration boundary layers]. Jasik-Slezak J, Slezak A. Polim Med; 2007 Jun; 37(1):73-9. PubMed ID: 17703726 [Abstract] [Full Text] [Related]
7. Mathematical model equation of the volume flows through polymeric membrane of heterogeneous non-ionic solutions. Slezak A, Slezak I, Zyska A, Jasik-Slezak J, Bryll A. Polim Med; 2005 Jun; 35(4):13-8. PubMed ID: 16619793 [Abstract] [Full Text] [Related]
8. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions]. Slezak A, Grzegorczyn S. Polim Med; 2007 Jun; 37(2):67-79. PubMed ID: 17957950 [Abstract] [Full Text] [Related]
9. [Mechanical pressure dependencies of the concentration boundary layers for polymeric membrane]. Jasik-Slezak J, Zyska A, Slezak A. Polim Med; 2010 Jun; 40(1):25-9. PubMed ID: 20446526 [Abstract] [Full Text] [Related]
10. [Gravitational osmotic pressure effect for a series of flat polymer membranes positioned horizontally]. Slezak A, Wasik J, Jasik-Slezak J, Twardokes W. Polim Med; 2001 Jun; 31(3-4):25-32. PubMed ID: 11935936 [Abstract] [Full Text] [Related]
11. [Streaming gravity-osmotic effect for a series of two flat polymeric membranes oriented horizontally and ternary non-ionic solutions]. Slezak A, Wasik J, Jasik-Slezak J, Skrzekowska-Baran I. Polim Med; 2001 Jun; 31(3-4):42-51. PubMed ID: 11935939 [Abstract] [Full Text] [Related]
13. [Membrane transport of non-homogeneous non-electrolyte solutions: on role of volume flows in creation of concentration boundary layers in binary solutions]. Slezak A. Polim Med; 2006 Jun; 36(4):37-42. PubMed ID: 17402231 [Abstract] [Full Text] [Related]
18. [Mathematical model describing the transport of dissociating substances solutions through polymeric membrane with concentration polarization]. Jasik-Slezak J, Slezak A. Polim Med; 2009 Jun; 39(4):77-82. PubMed ID: 20099739 [Abstract] [Full Text] [Related]
19. [Concentration boundary layers thicknesses estimation method based on measurements of the volume flux of ternary solutions]. Slezak A. Polim Med; 2008 Jun; 38(4):35-9. PubMed ID: 19245083 [Abstract] [Full Text] [Related]
20. A model equations for voltage concentration boundary layers effect in a single polymeric membrane electrochemical cell. Slezak A, Slezak K, Zyska A. Polim Med; 2004 Jun; 34(3):55-62. PubMed ID: 15631156 [Abstract] [Full Text] [Related] Page: [Next] [New Search]