These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


435 related items for PubMed ID: 19581705

  • 1. Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite.
    Horiuchi S, Asaoka K, Tanaka E.
    Biomed Mater Eng; 2009; 19(2-3):121-31. PubMed ID: 19581705
    [Abstract] [Full Text] [Related]

  • 2. Development of a strontium-containing hydroxyapatite bone cement.
    Guo D, Xu K, Zhao X, Han Y.
    Biomaterials; 2005 Jul; 26(19):4073-83. PubMed ID: 15664634
    [Abstract] [Full Text] [Related]

  • 3. Effects of heat treatment on the bioactivity of surface-modified titanium in calcium solution.
    Sultana R, Hamada K, Ichikawa T, Asaoka K.
    Biomed Mater Eng; 2009 Jul; 19(2-3):193-204. PubMed ID: 19581714
    [Abstract] [Full Text] [Related]

  • 4. Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis.
    Ginebra MP, Driessens FC, Planell JA.
    Biomaterials; 2004 Aug; 25(17):3453-62. PubMed ID: 15020119
    [Abstract] [Full Text] [Related]

  • 5. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior.
    Xu JL, Khor KA, Gu YW, Kumar R, Cheang P.
    Biomaterials; 2005 May; 26(15):2197-207. PubMed ID: 15585221
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM, Kon M, Asaoka K.
    Biomed Mater Eng; 2003 May; 13(3):247-59. PubMed ID: 12883174
    [Abstract] [Full Text] [Related]

  • 7. Hydrolysis of tetracalcium phosphate under a near-constant-composition condition--effects of pH and particle size.
    Chow LC, Markovic M, Frukhtbeyn SA, Takagi S.
    Biomaterials; 2005 Feb; 26(4):393-401. PubMed ID: 15275813
    [Abstract] [Full Text] [Related]

  • 8. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites.
    Liu C, Chen CW, Ducheyne P.
    Biomed Mater; 2008 Sep; 3(3):034111. PubMed ID: 18689928
    [Abstract] [Full Text] [Related]

  • 9. Effect of added gelatin on the properties of calcium phosphate cement.
    Bigi A, Bracci B, Panzavolta S.
    Biomaterials; 2004 Jun; 25(14):2893-9. PubMed ID: 14962568
    [Abstract] [Full Text] [Related]

  • 10. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T, Ohtsuki C, Kyomoto M, Tanihara M, Mori A, Kuramoto K.
    J Biomed Mater Res A; 2003 Dec 15; 67(4):1417-23. PubMed ID: 14624530
    [Abstract] [Full Text] [Related]

  • 11. Effect of adding sodium hexametaphosphate liquefier on basic properties of calcium phosphate cements.
    Hesaraki S, Zamanian A, Moztarzadeh F.
    J Biomed Mater Res A; 2009 Feb 15; 88(2):314-21. PubMed ID: 18286603
    [Abstract] [Full Text] [Related]

  • 12. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.
    Horiuchi S, Hiasa M, Yasue A, Sekine K, Hamada K, Asaoka K, Tanaka E.
    J Mech Behav Biomed Mater; 2014 Jan 15; 29():151-60. PubMed ID: 24090874
    [Abstract] [Full Text] [Related]

  • 13. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW, Khor KA, Cheang P.
    Biomaterials; 2004 Aug 15; 25(18):4127-34. PubMed ID: 15046903
    [Abstract] [Full Text] [Related]

  • 14. Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies.
    Neira IS, Kolen'ko YV, Kommareddy KP, Manjubala I, Yoshimura M, Guitián F.
    ACS Appl Mater Interfaces; 2010 Nov 15; 2(11):3276-84. PubMed ID: 21038864
    [Abstract] [Full Text] [Related]

  • 15. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste.
    Almirall A, Larrecq G, Delgado JA, Martínez S, Planell JA, Ginebra MP.
    Biomaterials; 2004 Aug 15; 25(17):3671-80. PubMed ID: 15020142
    [Abstract] [Full Text] [Related]

  • 16. Physicochemical properties of TTCP/DCPA system cement formed in physiological saline solution and its cytotoxicity.
    Dagang G, Kewei X, Haoliang S, Yong H.
    J Biomed Mater Res A; 2006 May 15; 77(2):313-23. PubMed ID: 16402384
    [Abstract] [Full Text] [Related]

  • 17. Bioactive porous titanium: an alternative to surgical implants.
    de Medeiros WS, de Oliveira MV, Pereira LC, de Andrade MC.
    Artif Organs; 2008 Apr 15; 32(4):277-82. PubMed ID: 18370941
    [Abstract] [Full Text] [Related]

  • 18. A novel skeletal drug delivery system using self-setting bioactive glass bone cement. IV: Cephalexin release from cement containing polymer-coated bulk powder.
    Otsuka M, Matsuda Y, Kokubo T, Yoshihara S, Nakamura T, Yamamuro T.
    Biomed Mater Eng; 1993 Apr 15; 3(4):229-36. PubMed ID: 8205064
    [Abstract] [Full Text] [Related]

  • 19. Preparation and characterization of a novel bioactive bone cement: glass based nanoscale hydroxyapatite bone cement.
    Fu Q, Zhou N, Huang W, Wang D, Zhang L, Li H.
    J Mater Sci Mater Med; 2004 Dec 15; 15(12):1333-8. PubMed ID: 15747186
    [Abstract] [Full Text] [Related]

  • 20. Synthesis and in vitro bioactivity of bredigite powders.
    Wu C, Chang J.
    J Biomater Appl; 2007 Jan 15; 21(3):251-63. PubMed ID: 16543286
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.