These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


319 related items for PubMed ID: 19589074

  • 1. Does botrytis cinerea Ignore H(2)O(2)-induced oxidative stress during infection? Characterization of botrytis activator protein 1.
    Temme N, Tudzynski P.
    Mol Plant Microbe Interact; 2009 Aug; 22(8):987-98. PubMed ID: 19589074
    [Abstract] [Full Text] [Related]

  • 2. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?
    Chagué V, Danit LV, Siewers V, Schulze-Gronover C, Tudzynski P, Tudzynski B, Sharon A.
    Mol Plant Microbe Interact; 2006 Jan; 19(1):33-42. PubMed ID: 16404951
    [Abstract] [Full Text] [Related]

  • 3. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen.
    Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M.
    FEMS Microbiol Lett; 2007 Dec; 277(1):1-10. PubMed ID: 17986079
    [Abstract] [Full Text] [Related]

  • 4. Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea.
    Viefhues A, Schlathoelter I, Simon A, Viaud M, Tudzynski P.
    Eukaryot Cell; 2015 Jul; 14(7):636-51. PubMed ID: 25934690
    [Abstract] [Full Text] [Related]

  • 5. Expression profiling of Botrytis cinerea genes identifies three patterns of up-regulation in planta and an FKBP12 protein affecting pathogenicity.
    Gioti A, Simon A, Le Pêcheur P, Giraud C, Pradier JM, Viaud M, Levis C.
    J Mol Biol; 2006 Apr 28; 358(2):372-86. PubMed ID: 16497329
    [Abstract] [Full Text] [Related]

  • 6. Reactive oxygen species and autophagy play a role in survival and differentiation of the phytopathogen Moniliophthora perniciosa.
    Pungartnik C, Melo SC, Basso TS, Macena WG, Cascardo JC, Brendel M.
    Fungal Genet Biol; 2009 Apr 28; 46(6-7):461-72. PubMed ID: 19324099
    [Abstract] [Full Text] [Related]

  • 7. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals.
    Lev S, Hadar R, Amedeo P, Baker SE, Yoder OC, Horwitz BA.
    Eukaryot Cell; 2005 Feb 28; 4(2):443-54. PubMed ID: 15701806
    [Abstract] [Full Text] [Related]

  • 8. Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Galpha subunit BCG1 using suppression subtractive hybridization (SSH).
    Schulze Gronover C, Schorn C, Tudzynski B.
    Mol Plant Microbe Interact; 2004 May 28; 17(5):537-46. PubMed ID: 15141958
    [Abstract] [Full Text] [Related]

  • 9. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens.
    Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F.
    Mol Plant Microbe Interact; 2009 Oct 28; 22(10):1227-38. PubMed ID: 19737096
    [Abstract] [Full Text] [Related]

  • 10. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea.
    Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P.
    Mol Plant Microbe Interact; 2008 Jun 28; 21(6):808-19. PubMed ID: 18624644
    [Abstract] [Full Text] [Related]

  • 11. The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response.
    Heller J, Ruhnke N, Espino JJ, Massaroli M, Collado IG, Tudzynski P.
    Mol Plant Microbe Interact; 2012 Jun 28; 25(6):802-16. PubMed ID: 22352714
    [Abstract] [Full Text] [Related]

  • 12. The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus.
    Lin CH, Yang SL, Chung KR.
    Mol Plant Microbe Interact; 2009 Aug 28; 22(8):942-52. PubMed ID: 19589070
    [Abstract] [Full Text] [Related]

  • 13. CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale.
    Nathues E, Joshi S, Tenberge KB, von den Driesch M, Oeser B, Bäumer N, Mihlan M, Tudzynski P.
    Mol Plant Microbe Interact; 2004 Apr 28; 17(4):383-93. PubMed ID: 15077671
    [Abstract] [Full Text] [Related]

  • 14. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity.
    Arbelet D, Malfatti P, Simond-Côte E, Fontaine T, Desquilbet L, Expert D, Kunz C, Soulié MC.
    Mol Plant Microbe Interact; 2010 Oct 28; 23(10):1324-34. PubMed ID: 20672878
    [Abstract] [Full Text] [Related]

  • 15. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea.
    Rascle C, Dieryckx C, Dupuy JW, Muszkieta L, Souibgui E, Droux M, Bruel C, Girard V, Poussereau N.
    Environ Microbiol Rep; 2018 Oct 28; 10(5):555-568. PubMed ID: 30066486
    [Abstract] [Full Text] [Related]

  • 16. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea.
    Yan L, Yang Q, Jiang J, Michailides TJ, Ma Z.
    Appl Microbiol Biotechnol; 2011 Apr 28; 90(1):215-26. PubMed ID: 21161211
    [Abstract] [Full Text] [Related]

  • 17. Apoptosis-like programmed cell death in the grey mould fungus Botrytis cinerea: genes and their role in pathogenicity.
    Shlezinger N, Doron A, Sharon A.
    Biochem Soc Trans; 2011 Oct 28; 39(5):1493-8. PubMed ID: 21936840
    [Abstract] [Full Text] [Related]

  • 18. Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea.
    Yang Q, Chen Y, Ma Z.
    Fungal Genet Biol; 2013 Jan 28; 50():63-71. PubMed ID: 23147398
    [Abstract] [Full Text] [Related]

  • 19. Redox systems in Botrytis cinerea: impact on development and virulence.
    Viefhues A, Heller J, Temme N, Tudzynski P.
    Mol Plant Microbe Interact; 2014 Aug 28; 27(8):858-74. PubMed ID: 24983673
    [Abstract] [Full Text] [Related]

  • 20. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Botrytis Cinerea.
    Vasquez-Montaño E, Hoppe G, Vega A, Olivares-Yañez C, Canessa P.
    mBio; 2020 Aug 04; 11(4):. PubMed ID: 32753496
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.