These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 19590784

  • 1. Evaluation of fluorescent polysaccharide nanoparticles for pH-sensing.
    Schulz A, Hornig S, Liebert T, Birckner E, Heinze T, Mohr GJ.
    Org Biomol Chem; 2009 May 07; 7(9):1884-9. PubMed ID: 19590784
    [Abstract] [Full Text] [Related]

  • 2. Dual-fluorophore ratiometric pH nanosensor with tuneable pKa and extended dynamic range.
    Chauhan VM, Burnett GR, Aylott JW.
    Analyst; 2011 May 07; 136(9):1799-801. PubMed ID: 21416087
    [Abstract] [Full Text] [Related]

  • 3. Polypeptide micelles with dual pH activatable dyes for sensing cells and cancer imaging.
    Gong P, Yang Y, Yi H, Fang S, Zhang P, Sheng Z, Gao G, Gao D, Cai L.
    Nanoscale; 2014 May 21; 6(10):5416-24. PubMed ID: 24714804
    [Abstract] [Full Text] [Related]

  • 4. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles.
    Gao F, Tang L, Dai L, Wang L.
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun 21; 67(2):517-21. PubMed ID: 16965933
    [Abstract] [Full Text] [Related]

  • 5. Loading Efficiency of Polymersomes with Contrast Agents and their Intracellular Delivery: Quantum Dots Versus Organic Dyes.
    Semkova S, Nikolova B, Zhelev Z, Tsoneva I, Zlateva G, Aoki I, Bakalova R.
    Anticancer Res; 2018 Feb 21; 38(2):825-831. PubMed ID: 29374708
    [Abstract] [Full Text] [Related]

  • 6. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor.
    Ma LY, Wang HY, Xie H, Xu LX.
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul 21; 60(8-9):1865-72. PubMed ID: 15248962
    [Abstract] [Full Text] [Related]

  • 7. A fluorescence-based glucose biosensor using concanavalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel.
    Russell RJ, Pishko MV, Gefrides CC, McShane MJ, Coté GL.
    Anal Chem; 1999 Aug 01; 71(15):3126-32. PubMed ID: 10450158
    [Abstract] [Full Text] [Related]

  • 8. Microporated PEG spheres for fluorescent analyte detection.
    Rounds RM, Ibey BL, Beier HT, Pishko MV, Coté GL.
    J Fluoresc; 2007 Jan 01; 17(1):57-63. PubMed ID: 17111227
    [Abstract] [Full Text] [Related]

  • 9. Facile preparation of FITC-modified silicon nanodots for ratiometric pH sensing and imaging.
    Zhang Y, Hou D, Yu X.
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun 15; 234():118276. PubMed ID: 32203687
    [Abstract] [Full Text] [Related]

  • 10. A novel cell-penetrating Janus nanoprobe for ratiometric fluorescence detection of pH in living cells.
    Wang L, Zhou Y, Zhang Y, Zhang G, Zhang C, He Y, Dong C, Shuang S.
    Talanta; 2020 Mar 01; 209():120436. PubMed ID: 31892062
    [Abstract] [Full Text] [Related]

  • 11. Dextran-coated silica nanoparticles for calcium-sensing.
    Schulz A, Woolley R, Tabarin T, McDonagh C.
    Analyst; 2011 Apr 21; 136(8):1722-7. PubMed ID: 21369598
    [Abstract] [Full Text] [Related]

  • 12. Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity.
    Wu S, Li Z, Han J, Han S.
    Chem Commun (Camb); 2011 Oct 28; 47(40):11276-8. PubMed ID: 21931895
    [Abstract] [Full Text] [Related]

  • 13. Fabrication of dual dye-doped silica nanotube as a fluorescent ratiometric pH sensor.
    Nguyen PD, Nguyen DT, Son SJ, Min J.
    J Nanosci Nanotechnol; 2014 Nov 28; 14(11):8719-23. PubMed ID: 25958591
    [Abstract] [Full Text] [Related]

  • 14. Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme-substrate system.
    Ke CY, Wu YT, Tseng WL.
    Biosens Bioelectron; 2015 Jul 15; 69():46-53. PubMed ID: 25703728
    [Abstract] [Full Text] [Related]

  • 15. Magnetic and fluorescent core-shell nanoparticles for ratiometric pH sensing.
    Lapresta-Fernández A, Doussineau T, Dutz S, Steiniger F, Moro AJ, Mohr GJ.
    Nanotechnology; 2011 Oct 14; 22(41):415501. PubMed ID: 21926455
    [Abstract] [Full Text] [Related]

  • 16. Rhodamine-based ratiometric fluorescence sensing for the detection of mercury(II) in aqueous solution.
    Liu H, Yu P, Du D, He C, Qiu B, Chen X, Chen G.
    Talanta; 2010 Apr 15; 81(1-2):433-7. PubMed ID: 20188942
    [Abstract] [Full Text] [Related]

  • 17. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications.
    Oltolina F, Gregoletto L, Colangelo D, Gómez-Morales J, Delgado-López JM, Prat M.
    Langmuir; 2015 Feb 10; 31(5):1766-75. PubMed ID: 25602940
    [Abstract] [Full Text] [Related]

  • 18. Construction strategy for ratiometric fluorescent probe based on Janus silica nanoparticles as a platform toward intracellular pH detection.
    Xing Y, Zhou Y, Fan L, Yang Y, Zhang Y, Deng X, Dong C, Shuang S.
    Talanta; 2019 Dec 01; 205():120021. PubMed ID: 31450404
    [Abstract] [Full Text] [Related]

  • 19. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH.
    Chen J, Tang Y, Wang H, Zhang P, Li Y, Jiang J.
    J Colloid Interface Sci; 2016 Dec 15; 484():298-307. PubMed ID: 27632075
    [Abstract] [Full Text] [Related]

  • 20. Fluorescent and Photostable Silicon Nanoparticles Sensors for Real-Time and Long-Term Intracellular pH Measurement in Live Cells.
    Chu B, Wang H, Song B, Peng F, Su Y, He Y.
    Anal Chem; 2016 Sep 20; 88(18):9235-42. PubMed ID: 27539306
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.