These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1698 related items for PubMed ID: 19592158

  • 1. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19.
    Pan R, Cao L, Zhang R.
    J Hazard Mater; 2009 Nov 15; 171(1-3):761-6. PubMed ID: 19592158
    [Abstract] [Full Text] [Related]

  • 2. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone.
    Aziz HA, Adlan MN, Ariffin KS.
    Bioresour Technol; 2008 Apr 15; 99(6):1578-83. PubMed ID: 17540556
    [Abstract] [Full Text] [Related]

  • 3. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case.
    Wang FY, Lin XG, Yin R.
    Environ Pollut; 2007 May 15; 147(1):248-55. PubMed ID: 17011687
    [Abstract] [Full Text] [Related]

  • 4. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk).
    Saeed A, Iqbal M, Akhtar MW.
    J Hazard Mater; 2005 Jan 14; 117(1):65-73. PubMed ID: 15621354
    [Abstract] [Full Text] [Related]

  • 5. Biosorption of Cd, Cu, Pb, and Zn from aqueous solutions by the fruiting bodies of jelly fungi (Tremella fuciformis and Auricularia polytricha).
    Pan R, Cao L, Huang H, Zhang R, Mo Y.
    Appl Microbiol Biotechnol; 2010 Oct 14; 88(4):997-1005. PubMed ID: 20717663
    [Abstract] [Full Text] [Related]

  • 6. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans.
    Chatterjee SK, Bhattacharjee I, Chandra G.
    J Hazard Mater; 2010 Mar 15; 175(1-3):117-25. PubMed ID: 19864059
    [Abstract] [Full Text] [Related]

  • 7. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems.
    Mahamadi C, Nharingo T.
    Bioresour Technol; 2010 Feb 15; 101(3):859-64. PubMed ID: 19773154
    [Abstract] [Full Text] [Related]

  • 8. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms.
    Sheng PX, Ting YP, Chen JP, Hong L.
    J Colloid Interface Sci; 2004 Jul 01; 275(1):131-41. PubMed ID: 15158390
    [Abstract] [Full Text] [Related]

  • 9. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.
    Xue Y, Hou H, Zhu S.
    J Hazard Mater; 2009 Feb 15; 162(1):391-401. PubMed ID: 18579295
    [Abstract] [Full Text] [Related]

  • 10. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT, Ming H, Megharaj M, Naidu R.
    J Hazard Mater; 2009 Nov 15; 171(1-3):1150-8. PubMed ID: 19656626
    [Abstract] [Full Text] [Related]

  • 11. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.
    Vilar VJ, Botelho CM, Boaventura RA.
    J Hazard Mater; 2008 Jun 15; 154(1-3):711-20. PubMed ID: 18055109
    [Abstract] [Full Text] [Related]

  • 12. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J, Xie ZM, Zhu YG, Naidu R.
    J Environ Sci (China); 2005 Jun 15; 17(6):881-5. PubMed ID: 16465871
    [Abstract] [Full Text] [Related]

  • 13. Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies.
    Lu WB, Kao WC, Shi JJ, Chang JS.
    J Hazard Mater; 2008 May 01; 153(1-2):372-81. PubMed ID: 17913351
    [Abstract] [Full Text] [Related]

  • 14. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.
    Verma VK, Tewari S, Rai JP.
    Bioresour Technol; 2008 Apr 01; 99(6):1932-8. PubMed ID: 17513104
    [Abstract] [Full Text] [Related]

  • 15. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution.
    Ahmad I, Ansari MI, Aqil F.
    Indian J Exp Biol; 2006 Jan 01; 44(1):73-6. PubMed ID: 16430095
    [Abstract] [Full Text] [Related]

  • 16. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H, Mikkelsen PS, Ledin A.
    Water Res; 2007 Feb 01; 41(3):591-602. PubMed ID: 17173951
    [Abstract] [Full Text] [Related]

  • 17. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E, Altun T.
    J Hazard Mater; 2007 Feb 09; 140(1-2):299-307. PubMed ID: 17045738
    [Abstract] [Full Text] [Related]

  • 18. Microbial and plant derived biomass for removal of heavy metals from wastewater.
    Ahluwalia SS, Goyal D.
    Bioresour Technol; 2007 Sep 09; 98(12):2243-57. PubMed ID: 16427277
    [Abstract] [Full Text] [Related]

  • 19. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent.
    Suzuki Y, Kametani T, Maruyama T.
    Water Res; 2005 May 09; 39(9):1803-8. PubMed ID: 15899278
    [Abstract] [Full Text] [Related]

  • 20. Selective adsorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomass.
    Chang JS, Huang JC.
    Biotechnol Prog; 1998 May 09; 14(5):735-41. PubMed ID: 9758663
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 85.