These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N. Arch Phys Med Rehabil; 2003 Apr; 84(4):477-82. PubMed ID: 12690583 [Abstract] [Full Text] [Related]
4. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. Otaka E, Otaka Y, Kasuga S, Nishimoto A, Yamazaki K, Kawakami M, Ushiba J, Liu M. J Neuroeng Rehabil; 2015 Aug 12; 12():66. PubMed ID: 26265327 [Abstract] [Full Text] [Related]
5. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Masiero S, Armani M, Ferlini G, Rosati G, Rossi A. Neurorehabil Neural Repair; 2014 May 12; 28(4):377-86. PubMed ID: 24316679 [Abstract] [Full Text] [Related]
6. Constraint-induced movement therapy after stroke: efficacy for patients with minimal upper-extremity motor ability. Bonifer NM, Anderson KM, Arciniegas DB. Arch Phys Med Rehabil; 2005 Sep 12; 86(9):1867-73. PubMed ID: 16181956 [Abstract] [Full Text] [Related]
7. Robotic unilateral and bilateral upper-limb movement training for stroke survivors afflicted by chronic hemiparesis. Simkins M, Kim H, Abrams G, Byl N, Rosen J. IEEE Int Conf Rehabil Robot; 2013 Jun 12; 2013():6650506. PubMed ID: 24187321 [Abstract] [Full Text] [Related]
11. Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Hughes AM, Freeman CT, Burridge JH, Chappell PH, Lewin PL, Rogers E. Neurorehabil Neural Repair; 2009 Jun 12; 23(6):559-68. PubMed ID: 19190087 [Abstract] [Full Text] [Related]
12. Mental practice with motor imagery: evidence for motor recovery and cortical reorganization after stroke. Butler AJ, Page SJ. Arch Phys Med Rehabil; 2006 Dec 12; 87(12 Suppl 2):S2-11. PubMed ID: 17140874 [Abstract] [Full Text] [Related]
13. Robot-assisted exercise for hand weakness after stroke: a pilot study. Stein J, Bishop L, Gillen G, Helbok R. Am J Phys Med Rehabil; 2011 Nov 12; 90(11):887-94. PubMed ID: 21952215 [Abstract] [Full Text] [Related]
14. Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial. Arya KN, Verma R, Garg RK, Sharma VP, Agarwal M, Aggarwal GG. Top Stroke Rehabil; 2012 Nov 12; 19(3):193-211. PubMed ID: 22668675 [Abstract] [Full Text] [Related]
15. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. Stein J, Narendran K, McBean J, Krebs K, Hughes R. Am J Phys Med Rehabil; 2007 Apr 12; 86(4):255-61. PubMed ID: 17413538 [Abstract] [Full Text] [Related]
17. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke. Pila O, Duret C, Laborne FX, Gracies JM, Bayle N, Hutin E. J Neuroeng Rehabil; 2017 Oct 13; 14(1):105. PubMed ID: 29029633 [Abstract] [Full Text] [Related]
18. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy. Squeri V, Masia L, Giannoni P, Sandini G, Morasso P. IEEE Trans Neural Syst Rehabil Eng; 2014 Mar 13; 22(2):312-25. PubMed ID: 23508271 [Abstract] [Full Text] [Related]