These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


296 related items for PubMed ID: 19595504

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses.
    Kilbride C, Poole J, Hutchings TR.
    Environ Pollut; 2006 Sep; 143(1):16-23. PubMed ID: 16406626
    [Abstract] [Full Text] [Related]

  • 3. Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples.
    Clark S, Menrath W, Chen M, Roda S, Succop P.
    Ann Agric Environ Med; 1999 Sep; 6(1):27-32. PubMed ID: 10384212
    [Abstract] [Full Text] [Related]

  • 4. Determination of the feasibility of using a portable X-ray fluorescence (XRF) analyzer in the field for measurement of lead content of sieved soil.
    Markey AM, Clark CS, Succop PA, Roda S.
    J Environ Health; 2008 Mar; 70(7):24-9; quiz 55-6. PubMed ID: 18348388
    [Abstract] [Full Text] [Related]

  • 5. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.
    Harper M, Pacolay B, Hintz P, Andrew ME.
    J Environ Monit; 2006 Mar; 8(3):384-92. PubMed ID: 16528423
    [Abstract] [Full Text] [Related]

  • 6. Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia.
    Stafilov T, Sajn R, Pancevski Z, Boev B, Frontasyeva MV, Strelkova LP.
    J Hazard Mater; 2010 Mar 15; 175(1-3):896-914. PubMed ID: 19944530
    [Abstract] [Full Text] [Related]

  • 7. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J.
    J Environ Manage; 2009 Feb 15; 90(2):1106-16. PubMed ID: 18572301
    [Abstract] [Full Text] [Related]

  • 8. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS).
    Dell'Aglio M, Gaudiuso R, Senesi GS, De Giacomo A, Zaccone C, Miano TM, De Pascale O.
    J Environ Monit; 2011 May 15; 13(5):1422-6. PubMed ID: 21416069
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C, Recatalá L, Peris M, Sánchez J.
    Chemosphere; 2006 Oct 15; 65(5):863-72. PubMed ID: 16635506
    [Abstract] [Full Text] [Related]

  • 11. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland.
    Zhang C.
    Environ Pollut; 2006 Aug 15; 142(3):501-11. PubMed ID: 16406233
    [Abstract] [Full Text] [Related]

  • 12. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China.
    Lu X, Wang L, Lei K, Huang J, Zhai Y.
    J Hazard Mater; 2009 Jan 30; 161(2-3):1058-62. PubMed ID: 18502044
    [Abstract] [Full Text] [Related]

  • 13. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H, Probst A, Liao B.
    Sci Total Environ; 2005 Mar 01; 339(1-3):153-66. PubMed ID: 15740766
    [Abstract] [Full Text] [Related]

  • 14. Metals distribution in soils around the cement factory in southern Jordan.
    Al-Khashman OA, Shawabkeh RA.
    Environ Pollut; 2006 Apr 01; 140(3):387-94. PubMed ID: 16361028
    [Abstract] [Full Text] [Related]

  • 15. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK, Sherman L, Armienta A, Concilio A, Salinas CF.
    Environ Pollut; 2007 Feb 01; 145(3):793-9. PubMed ID: 16872728
    [Abstract] [Full Text] [Related]

  • 16. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.
    Parsons C, Margui Grabulosa E, Pili E, Floor GH, Roman-Ross G, Charlet L.
    J Hazard Mater; 2013 Nov 15; 262():1213-22. PubMed ID: 22819961
    [Abstract] [Full Text] [Related]

  • 17. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.
    Lee H, Choi Y, Suh J, Lee SH.
    Int J Environ Res Public Health; 2016 Mar 30; 13(4):384. PubMed ID: 27043594
    [Abstract] [Full Text] [Related]

  • 18. Evaluation of a portable X-ray fluorescence instrument for the determination of lead in workplace air samples.
    Morley JC, Clark CS, Deddens JA, Ashley K, Roda S.
    Appl Occup Environ Hyg; 1999 May 30; 14(5):306-16. PubMed ID: 10446483
    [Abstract] [Full Text] [Related]

  • 19. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia.
    Tembo BD, Sichilongo K, Cernak J.
    Chemosphere; 2006 Apr 30; 63(3):497-501. PubMed ID: 16337989
    [Abstract] [Full Text] [Related]

  • 20. Childhood lead poisoning investigations: evaluating a portable instrument for testing soil lead.
    Reames G, Lance LL.
    J Environ Health; 2002 Apr 30; 64(8):9-13, 25. PubMed ID: 11930816
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.