These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Computer simulation of blood flow patterns in arteries of various geometries. Wong PK, Johnston KW, Ethier CR, Cobbold RS. J Vasc Surg; 1991 Nov; 14(5):658-67. PubMed ID: 1942375 [Abstract] [Full Text] [Related]
3. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL, Kizito JP. Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [Abstract] [Full Text] [Related]
4. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers. Reuderink PJ, Hoogstraten HW, Sipkema P, Hillen B, Westerhof N. J Biomech; 1989 Mar; 22(8-9):819-27. PubMed ID: 2613717 [Abstract] [Full Text] [Related]
5. Measurement of steady-flow instability and turbulence levels in Dacron vascular grafts. Shombert DG. J Biomech Eng; 1992 Nov; 114(4):521-6. PubMed ID: 1487906 [Abstract] [Full Text] [Related]
6. Biomechanical differential equations of variables of the arterial pulse based on vessel wall and blood flow features. Bendel U. Biomed Tech (Berl); 1998 Apr; 43(4):100-6. PubMed ID: 9611396 [Abstract] [Full Text] [Related]
7. Computer simulation of human blood flow and vascular resistance. Burnette RR. Comput Biol Med; 1996 Sep; 26(5):363-9. PubMed ID: 8889334 [Abstract] [Full Text] [Related]
8. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. Perktold K, Rappitsch G. J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682 [Abstract] [Full Text] [Related]
9. Analysis of particle trajectories in aortic artery bifurcations with stenosis. Nazemi M, Kleinstreuer C. J Biomech Eng; 1989 Nov; 111(4):311-5. PubMed ID: 2486370 [Abstract] [Full Text] [Related]
10. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Glagov S, Zarins C, Giddens DP, Ku DN. Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352 [Abstract] [Full Text] [Related]
11. A thick walled viscoelastic model for the mechanics of arteries. Kuchar NR, Ostrach S. J Biomech; 1969 Oct; 2(4):443-54. PubMed ID: 16335143 [No Abstract] [Full Text] [Related]
12. Angiographic methods for the study of fluid mechanical factors in atherogenesis. Smedby O. Acta Radiol Suppl; 1992 Oct; 380():1-38. PubMed ID: 1414424 [Abstract] [Full Text] [Related]
13. Mathematical modeling of arterial blood flow and correlation to atherosclerosis. Perktold K, Rappitsch G. Technol Health Care; 1995 Dec; 3(3):139-51. PubMed ID: 8749862 [Abstract] [Full Text] [Related]
14. Quantitative analysis of effects of hemodynamic stress on temporal variations of cardiac phases in models of human carotid bulbs. Saho T, Onishi H. Radiol Phys Technol; 2017 Dec; 10(4):475-482. PubMed ID: 28887805 [Abstract] [Full Text] [Related]
15. [Possibilities of mathematical models of flow anomalies in arterial blood vessels]. Perktold K. Vasa Suppl; 1991 Dec; 32():31-42. PubMed ID: 1771522 [No Abstract] [Full Text] [Related]
16. Effect of exercise on hemodynamic conditions in the abdominal aorta. Taylor CA, Hughes TJ, Zarins CK. J Vasc Surg; 1999 Jun; 29(6):1077-89. PubMed ID: 10359942 [Abstract] [Full Text] [Related]
17. A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics. Hademenos GJ, Massoud TF, Viñuela F. Neurosurgery; 1996 May; 38(5):1005-14; discussion 1014-5. PubMed ID: 8727827 [Abstract] [Full Text] [Related]
20. Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Taylor CA, Hughes TJ, Zarins CK. Ann Biomed Eng; 1998 May; 26(6):975-87. PubMed ID: 9846936 [Abstract] [Full Text] [Related] Page: [Next] [New Search]