These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
190 related items for PubMed ID: 19601673
1. Metabolite profiling of two novel low phytic acid (lpa) soybean mutants. Frank T, Nörenberg S, Engel KH. J Agric Food Chem; 2009 Jul 22; 57(14):6408-16. PubMed ID: 19601673 [Abstract] [Full Text] [Related]
2. Metabolite profiling of two low phytic acid (lpa) rice mutants. Frank T, Meuleye BS, Miller A, Shu QY, Engel KH. J Agric Food Chem; 2007 Dec 26; 55(26):11011-9. PubMed ID: 18052121 [Abstract] [Full Text] [Related]
3. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr). Yuan FJ, Zhu DH, Deng B, Fu XJ, Dong DK, Zhu SL, Li BQ, Shu QY. J Agric Food Chem; 2009 May 13; 57(9):3632-8. PubMed ID: 19323582 [Abstract] [Full Text] [Related]
7. Impact of Cross-Breeding of Low Phytic Acid MIPS1 and IPK1 Soybean ( Glycine max L. Merr.) Mutants on Their Contents of Inositol Phosphate Isomers. Goßner S, Yuan F, Zhou C, Tan Y, Shu Q, Engel KH. J Agric Food Chem; 2019 Jan 09; 67(1):247-257. PubMed ID: 30541281 [Abstract] [Full Text] [Related]
8. Phytic Acid Contents and Metabolite Profiles of Progenies from Crossing Low Phytic Acid OsMIK and OsMRP5 Rice (Oryza sativa L.) Mutants. Tan Y, Zhou C, Goßner S, Li Y, Engel KH, Shu Q. J Agric Food Chem; 2019 Oct 23; 67(42):11805-11814. PubMed ID: 31566383 [Abstract] [Full Text] [Related]
10. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Hitz WD, Carlson TJ, Kerr PS, Sebastian SA. Plant Physiol; 2002 Feb 23; 128(2):650-60. PubMed ID: 11842168 [Abstract] [Full Text] [Related]
11. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Kim SI, Andaya CB, Newman JW, Goyal SS, Tai TH. Theor Appl Genet; 2008 Nov 23; 117(8):1291-301. PubMed ID: 18726583 [Abstract] [Full Text] [Related]
12. Impact of Crossing Parent and Environment on the Metabolite Profiles of Progenies Generated from a Low Phytic Acid Rice ( Oryza sativa L.) Mutant. Zhou C, Tan Y, Goßner S, Li Y, Shu Q, Engel KH. J Agric Food Chem; 2019 Feb 27; 67(8):2396-2407. PubMed ID: 30724567 [Abstract] [Full Text] [Related]
13. Metabolite profiling of maize kernels--genetic modification versus environmental influence. Frank T, Röhlig RM, Davies HV, Barros E, Engel KH. J Agric Food Chem; 2012 Mar 28; 60(12):3005-12. PubMed ID: 22375597 [Abstract] [Full Text] [Related]
17. Identification of genes necessary for wild-type levels of seed phytic acid in Arabidopsis thaliana using a reverse genetics approach. Kim SI, Tai TH. Mol Genet Genomics; 2011 Aug 18; 286(2):119-33. PubMed ID: 21698461 [Abstract] [Full Text] [Related]
19. Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Suzuki M, Tanaka K, Kuwano M, Yoshida KT. Gene; 2007 Dec 15; 405(1-2):55-64. PubMed ID: 17961936 [Abstract] [Full Text] [Related]
20. Comparison of the phosphorus and mineral concentrations in bran and abraded kernel fractions of a normal barley (Hordeum vulgare) cultivar versus four low phytic acid isolines. Liu K, Peterson KL, Raboy V. J Agric Food Chem; 2007 May 30; 55(11):4453-60. PubMed ID: 17488089 [Abstract] [Full Text] [Related] Page: [Next] [New Search]