These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 19615194

  • 21. Differential development of antinociceptive tolerance to morphine and fentanyl is not linked to efficacy in the ventrolateral periaqueductal gray of the rat.
    Bobeck EN, Haseman RA, Hong D, Ingram SL, Morgan MM.
    J Pain; 2012 Aug; 13(8):799-807. PubMed ID: 22766006
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Regulation of mu-opioid receptors, G-protein-coupled receptor kinases and beta-arrestin 2 in the rat brain after chronic opioid receptor antagonism.
    Díaz A, Pazos A, Flórez J, Ayesta FJ, Santana V, Hurlé MA.
    Neuroscience; 2002 Aug; 112(2):345-53. PubMed ID: 12044452
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. [Expression of metabotropic glutamate receptor 5 in spinal cord of morphine tolerant rats].
    Liu JB, Jiang W, Wang AZ.
    Zhonghua Yi Xue Za Zhi; 2009 Aug 18; 89(31):2221-4. PubMed ID: 20058604
    [Abstract] [Full Text] [Related]

  • 26. [Effects of electroacupuncture on expression of μ-opioid receptor in nucleus ceruleus in rats with bone cancer pain-morphine tolerance].
    Fu T, Wang L, Du J, Chen F, Fang J, Liang Y, Fang J.
    Zhongguo Zhen Jiu; 2017 May 12; 37(5):513-520. PubMed ID: 29231613
    [Abstract] [Full Text] [Related]

  • 27. Morphine alters the selective association between mu-opioid receptors and specific RGS proteins in mouse periaqueductal gray matter.
    Garzón J, Rodríguez-Muñoz M, Sánchez-Blázquez P.
    Neuropharmacology; 2005 May 12; 48(6):853-68. PubMed ID: 15829256
    [Abstract] [Full Text] [Related]

  • 28. Evidence of involvement of the nNOS and the kappa-opioid receptor in the same intracellular network of the rat periaqueductal gray that controls morphine tolerance and dependence.
    Herráez-Baranda LA, Carretero J, González-Sarmiento R, Laorden ML, Milanés MV, Rodríguez RE.
    Brain Res Mol Brain Res; 2005 Jun 13; 137(1-2):166-73. PubMed ID: 15950775
    [Abstract] [Full Text] [Related]

  • 29. Recovery from mu-opioid receptor desensitization after chronic treatment with morphine and methadone.
    Quillinan N, Lau EK, Virk M, von Zastrow M, Williams JT.
    J Neurosci; 2011 Mar 23; 31(12):4434-43. PubMed ID: 21430144
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Evidence that behavioral phenotypes of morphine in β-arr2-/- mice are due to the unmasking of JNK signaling.
    Mittal N, Tan M, Egbuta O, Desai N, Crawford C, Xie CW, Evans C, Walwyn W.
    Neuropsychopharmacology; 2012 Jul 23; 37(8):1953-62. PubMed ID: 22491351
    [Abstract] [Full Text] [Related]

  • 32. Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine.
    Bagley EE, Chieng BC, Christie MJ, Connor M.
    Br J Pharmacol; 2005 Sep 23; 146(1):68-76. PubMed ID: 15980868
    [Abstract] [Full Text] [Related]

  • 33. Decreased immunodensities of micro-opioid receptors, receptor kinases GRK 2/6 and beta-arrestin-2 in postmortem brains of opiate addicts.
    Ferrer-Alcón M, La Harpe R, García-Sevilla JA.
    Brain Res Mol Brain Res; 2004 Feb 05; 121(1-2):114-22. PubMed ID: 14969742
    [Abstract] [Full Text] [Related]

  • 34. Activation of mu opioid receptors in the ventrolateral periaqueductal gray inhibits reflex micturition in anesthetized rats.
    Matsumoto S, Levendusky MC, Longhurst PA, Levin RM, Millington WR.
    Neurosci Lett; 2004 Jun 10; 363(2):116-9. PubMed ID: 15172097
    [Abstract] [Full Text] [Related]

  • 35. Complex formation between the vasopressin 1b receptor, β-arrestin-2, and the μ-opioid receptor underlies morphine tolerance.
    Koshimizu TA, Honda K, Nagaoka-Uozumi S, Ichimura A, Kimura I, Nakaya M, Sakai N, Shibata K, Ushijima K, Fujimura A, Hirasawa A, Kurose H, Tsujimoto G, Tanoue A, Takano Y.
    Nat Neurosci; 2018 Jun 10; 21(6):820-833. PubMed ID: 29713080
    [Abstract] [Full Text] [Related]

  • 36. Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons.
    Chen SR, Prunean A, Pan HM, Welker KL, Pan HL.
    Neuroscience; 2007 Mar 16; 145(2):676-85. PubMed ID: 17239544
    [Abstract] [Full Text] [Related]

  • 37. Role of G(i)alpha2-protein in opioid tolerance and mu-opioid receptor downregulation in vivo.
    Yoburn BC, Gomes BA, Rajashekara V, Patel C, Patel M.
    Synapse; 2003 Feb 16; 47(2):109-16. PubMed ID: 12454948
    [Abstract] [Full Text] [Related]

  • 38. Expression of neural RGS-R7 and Gbeta5 Proteins in Response to Acute and Chronic Morphine.
    López-Fando A, Rodríguez-Muñoz M, Sánchez-Blázquez P, Garzón J.
    Neuropsychopharmacology; 2005 Jan 16; 30(1):99-110. PubMed ID: 15199376
    [Abstract] [Full Text] [Related]

  • 39. RGS9-2 is a negative modulator of mu-opioid receptor function.
    Psifogeorgou K, Papakosta P, Russo SJ, Neve RL, Kardassis D, Gold SJ, Zachariou V.
    J Neurochem; 2007 Oct 16; 103(2):617-25. PubMed ID: 17725581
    [Abstract] [Full Text] [Related]

  • 40. [Increased release of orphanin FQ (OFQ) in brain of chronic morphine tolerant rats].
    Yuan L, Han Z, Zhang ZK, Han JS.
    Sheng Li Xue Bao; 1999 Aug 16; 51(4):454-8. PubMed ID: 11498977
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.