These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
492 related items for PubMed ID: 19618733
1. [Water in oil microemulsions for transdermal delivery of fluorouracil]. Liu F, Xiao YY, Ping QN, Yang C. Yao Xue Xue Bao; 2009 May; 44(5):540-7. PubMed ID: 19618733 [Abstract] [Full Text] [Related]
2. [Water in oil microemulsions containing NaCl for transdermal delivery of fluorouracil]. Xiao YY, Liu F, Chen ZP, Ping QN. Yao Xue Xue Bao; 2011 Jun; 46(6):720-6. PubMed ID: 21882535 [Abstract] [Full Text] [Related]
3. [Microemulsion-based gel of fluorouracil for transdermal delivery]. Xiao YY, Liu F, Chen ZP, Ping QN. Yao Xue Xue Bao; 2010 Nov; 45(11):1440-6. PubMed ID: 21361046 [Abstract] [Full Text] [Related]
4. The influence of the structure and the composition of water/AOT-Tween 85/IPM microemulsion system on transdermal delivery of 5-fluorouracil. Yanyu X, Fang L, Qineng P, Hao C. Drug Dev Ind Pharm; 2012 Dec; 38(12):1521-9. PubMed ID: 22324326 [Abstract] [Full Text] [Related]
6. Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: effect of phase transition. El Maghraby GM. Colloids Surf B Biointerfaces; 2010 Feb 01; 75(2):595-600. PubMed ID: 19892531 [Abstract] [Full Text] [Related]
7. Cremophor RH40-PEG 400 microemulsions as transdermal drug delivery carrier for ketoprofen. Ngawhirunpat T, Worachun N, Opanasopit P, Rojanarata T, Panomsuk S. Pharm Dev Technol; 2013 Feb 01; 18(4):798-803. PubMed ID: 22023398 [Abstract] [Full Text] [Related]
11. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Shakeel F, Ramadan W. Colloids Surf B Biointerfaces; 2010 Jan 01; 75(1):356-62. PubMed ID: 19783127 [Abstract] [Full Text] [Related]
12. Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Chen H, Mou D, Du D, Chang X, Zhu D, Liu J, Xu H, Yang X. Int J Pharm; 2007 Aug 16; 341(1-2):78-84. PubMed ID: 17570625 [Abstract] [Full Text] [Related]
13. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures. Cho YH, Kim S, Bae EK, Mok CK, Park J. J Food Sci; 2008 Apr 16; 73(3):E115-21. PubMed ID: 18387105 [Abstract] [Full Text] [Related]
15. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: ketoprofen, lidocaine, and caffeine. Zhang J, Michniak-Kohn B. Int J Pharm; 2011 Dec 12; 421(1):34-44. PubMed ID: 21959104 [Abstract] [Full Text] [Related]
16. [Application of genetic algorithm in formulation optimization of microemulsion for transdermal delivery]. Tian QP, Li P, Qiu LX, Xie Y, Xie KC. Yao Xue Xue Bao; 2008 Dec 12; 43(12):1228-32. PubMed ID: 19244755 [Abstract] [Full Text] [Related]
18. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: effects of cosurfactants. El Maghraby GM. Int J Pharm; 2008 May 01; 355(1-2):285-92. PubMed ID: 18243604 [Abstract] [Full Text] [Related]
19. Investigation of a nanoemulsion as vehicle for transdermal delivery of amlodipine. Kumar D, Aqil M, Rizwan M, Sultana Y, Ali M. Pharmazie; 2009 Feb 01; 64(2):80-5. PubMed ID: 19320278 [Abstract] [Full Text] [Related]