These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Wavelet-based fractal features with active segment selection: application to single-trial EEG data. Hsu WY, Lin CC, Ju MS, Sun YN. J Neurosci Methods; 2007 Jun 15; 163(1):145-60. PubMed ID: 17379316 [Abstract] [Full Text] [Related]
6. Combining spatial filters for the classification of single-trial EEG in a finger movement task. Liao X, Yao D, Wu D, Li C. IEEE Trans Biomed Eng; 2007 May 15; 54(5):821-31. PubMed ID: 17518278 [Abstract] [Full Text] [Related]
7. Improving BCI performance by task-related trial pruning. Sannelli C, Braun M, Müller KR. Neural Netw; 2009 Nov 15; 22(9):1295-304. PubMed ID: 19762208 [Abstract] [Full Text] [Related]
8. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects. Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Müller KR. IEEE Trans Biomed Eng; 2008 Oct 15; 55(10):2452-62. PubMed ID: 18838371 [Abstract] [Full Text] [Related]
9. Subject-independent mental state classification in single trials. Fazli S, Popescu F, Danóczy M, Blankertz B, Müller KR, Grozea C. Neural Netw; 2009 Nov 15; 22(9):1305-12. PubMed ID: 19560898 [Abstract] [Full Text] [Related]
10. A resampling method for estimating the signal subspace of spatio-temporal EEG/MEG data. Maris E. IEEE Trans Biomed Eng; 2003 Aug 15; 50(8):935-49. PubMed ID: 12892321 [Abstract] [Full Text] [Related]
11. Classification of movement intention by spatially filtered electromagnetic inverse solutions. Congedo M, Lotte F, Lécuyer A. Phys Med Biol; 2006 Apr 21; 51(8):1971-89. PubMed ID: 16585840 [Abstract] [Full Text] [Related]
12. Auditory and spatial navigation imagery in Brain-Computer Interface using optimized wavelets. Cabrera AF, Dremstrup K. J Neurosci Methods; 2008 Sep 15; 174(1):135-46. PubMed ID: 18656500 [Abstract] [Full Text] [Related]
13. Brain-computer interface (BCI) operation: signal and noise during early training sessions. McFarland DJ, Sarnacki WA, Vaughan TM, Wolpaw JR. Clin Neurophysiol; 2005 Jan 15; 116(1):56-62. PubMed ID: 15589184 [Abstract] [Full Text] [Related]
14. Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. Müller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B. J Neurosci Methods; 2008 Jan 15; 167(1):82-90. PubMed ID: 18031824 [Abstract] [Full Text] [Related]
15. A regularized discriminative framework for EEG analysis with application to brain-computer interface. Tomioka R, Müller KR. Neuroimage; 2010 Jan 01; 49(1):415-32. PubMed ID: 19646534 [Abstract] [Full Text] [Related]
16. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). Fabiani GE, McFarland DJ, Wolpaw JR, Pfurtscheller G. IEEE Trans Neural Syst Rehabil Eng; 2004 Sep 01; 12(3):331-8. PubMed ID: 15473195 [Abstract] [Full Text] [Related]
17. Adaptive classification for Brain Computer Interface systems using Sequential Monte Carlo sampling. Yoon JW, Roberts SJ, Dyson M, Gan JQ. Neural Netw; 2009 Nov 01; 22(9):1286-94. PubMed ID: 19608382 [Abstract] [Full Text] [Related]
18. Beamforming in noninvasive brain-computer interfaces. Grosse-Wentrup M, Liefhold C, Gramann K, Buss M. IEEE Trans Biomed Eng; 2009 Apr 01; 56(4):1209-19. PubMed ID: 19423426 [Abstract] [Full Text] [Related]
19. Time Domain Parameters as a feature for EEG-based Brain-Computer Interfaces. Vidaurre C, Krämer N, Blankertz B, Schlögl A. Neural Netw; 2009 Nov 01; 22(9):1313-9. PubMed ID: 19660908 [Abstract] [Full Text] [Related]
20. Learning from feedback training data at a self-paced brain-computer interface. Zhang H, Liyanage SR, Wang C, Guan C. J Neural Eng; 2011 Aug 01; 8(4):046035. PubMed ID: 21772075 [Abstract] [Full Text] [Related] Page: [Next] [New Search]