These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
60 related items for PubMed ID: 19629952
1. Mechanisms underlying the inhibition of the cytochrome P450 system by copper ions. Letelier ME, Faúndez M, Jara-Sandoval J, Molina-Berríos A, Cortés-Troncoso J, Aracena-Parks P, Marín-Catalán R. J Appl Toxicol; 2009 Nov; 29(8):695-702. PubMed ID: 19629952 [Abstract] [Full Text] [Related]
2. Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Letelier ME, Lepe AM, Faúndez M, Salazar J, Marín R, Aracena P, Speisky H. Chem Biol Interact; 2005 Jan 15; 151(2):71-82. PubMed ID: 15698579 [Abstract] [Full Text] [Related]
3. Mechanisms underlying iron and copper ions toxicity in biological systems: Pro-oxidant activity and protein-binding effects. Letelier ME, Sánchez-Jofré S, Peredo-Silva L, Cortés-Troncoso J, Aracena-Parks P. Chem Biol Interact; 2010 Oct 06; 188(1):220-7. PubMed ID: 20603110 [Abstract] [Full Text] [Related]
4. Melatonin protects the cytochrome P450 system through a novel antioxidant mechanism. Letelier ME, Jara-Sandoval J, Molina-Berríos A, Faúndez M, Aracena-Parks P, Aguilera F. Chem Biol Interact; 2010 May 14; 185(3):208-14. PubMed ID: 20302852 [Abstract] [Full Text] [Related]
5. Copper modifies liver microsomal UDP-glucuronyltransferase activity through different and opposite mechanisms. Letelier ME, Lagos F, Faúndez M, Miranda D, Montoya M, Aracena-Parks P, González-Lira V. Chem Biol Interact; 2007 Apr 05; 167(1):1-11. PubMed ID: 17274970 [Abstract] [Full Text] [Related]
6. Short-term inhibitory effects of nitric oxide on cytochrome P450-mediated drug metabolism: time dependency and reversibility profiles in isolated perfused rat livers. Vuppugalla R, Mehvar R. Drug Metab Dispos; 2004 Dec 05; 32(12):1446-54. PubMed ID: 15383494 [Abstract] [Full Text] [Related]
7. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes. Ferrara R, Tolando R, King LJ, Manno M. Toxicol Appl Pharmacol; 1997 Apr 05; 143(2):420-8. PubMed ID: 9144458 [Abstract] [Full Text] [Related]
8. Aryl acetylenes as mechanism-based inhibitors of cytochrome P450-dependent monooxygenase enzymes. Foroozesh M, Primrose G, Guo Z, Bell LC, Alworth WL, Guengerich FP. Chem Res Toxicol; 1997 Jan 05; 10(1):91-102. PubMed ID: 9074808 [Abstract] [Full Text] [Related]
9. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment. Hissink AM, Oudshoorn MJ, Van Ommen B, Haenen GR, Van Bladeren PJ. Chem Res Toxicol; 1996 Dec 05; 9(8):1249-56. PubMed ID: 8951226 [Abstract] [Full Text] [Related]
10. Evaluation of cytochrome P450 activity in vitro, using dermal and hepatic microsomes from four species and two keratinocyte cell lines in culture. Rolsted K, Kissmeyer AM, Rist GM, Hansen SH. Arch Dermatol Res; 2008 Jan 05; 300(1):11-8. PubMed ID: 17992533 [Abstract] [Full Text] [Related]
11. Inhibition of cytosolic glutathione S-transferase activity from rat liver by copper. Letelier ME, Martínez M, González-Lira V, Faúndez M, Aracena-Parks P. Chem Biol Interact; 2006 Dec 01; 164(1-2):39-48. PubMed ID: 17011537 [Abstract] [Full Text] [Related]
12. Effects of dioxane on cytochrome P450 enzymes in liver, kidney, lung and nasal mucosa of rat. Nannelli A, De Rubertis A, Longo V, Gervasi PG. Arch Toxicol; 2005 Feb 01; 79(2):74-82. PubMed ID: 15490126 [Abstract] [Full Text] [Related]
14. In vitro studies on the metabolic activation of the furanopyridine L-754,394, a highly potent and selective mechanism-based inhibitor of cytochrome P450 3A4. Sahali-Sahly Y, Balani SK, Lin JH, Baillie TA. Chem Res Toxicol; 1996 Sep 01; 9(6):1007-12. PubMed ID: 8870989 [Abstract] [Full Text] [Related]
15. Microsomal oxidation of N,N-diethylformamide and its effect on P450-dependent monooxygenases in rat liver. Amato G, Longo V, Mazzaccaro A, Gervasi PG. Chem Res Toxicol; 1996 Sep 01; 9(5):882-90. PubMed ID: 8828925 [Abstract] [Full Text] [Related]
16. Preclinical pharmacokinetics and metabolism of 6-(4-(2,5-difluorophenyl)oxazol-5-yl)-3-isopropyl-[1,2,4]-triazolo[4,3-a]pyridine, a novel and selective p38alpha inhibitor: identification of an active metabolite in preclinical species and human liver microsomes. Kalgutkar AS, Hatch HL, Kosea F, Nguyen HT, Choo EF, McClure KF, Taylor TJ, Henne KR, Kuperman AV, Dombroski MA, Letavic MA. Biopharm Drug Dispos; 2006 Nov 01; 27(8):371-86. PubMed ID: 16944451 [Abstract] [Full Text] [Related]
17. Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Fröhlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber TR. Toxicol Appl Pharmacol; 2010 Feb 01; 242(3):326-32. PubMed ID: 19909766 [Abstract] [Full Text] [Related]
18. Kupffer cell stimulation with Corynebacterium parvum reduces some cytochrome P450-dependent activities and diminishes acetaminophen and carbon tetrachloride-induced liver injury in the rat. Raiford DS, Thigpen MC. Toxicol Appl Pharmacol; 1994 Nov 01; 129(1):36-45. PubMed ID: 7974494 [Abstract] [Full Text] [Related]
19. The involvement of cytochrome P450 peroxidase in the metabolic bioactivation of cumene hydroperoxide by isolated rat hepatocytes. Anari MR, Khan S, O'Brien PJ. Chem Res Toxicol; 1996 Sep 01; 9(6):924-31. PubMed ID: 8870978 [Abstract] [Full Text] [Related]