These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1852 related items for PubMed ID: 19631769
1. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Patlolla A, Collins G, Arinzeh TL. Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769 [Abstract] [Full Text] [Related]
2. Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering. Patlolla A, Arinzeh TL. Biotechnol Bioeng; 2014 May; 111(5):1000-17. PubMed ID: 24264603 [Abstract] [Full Text] [Related]
3. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [Abstract] [Full Text] [Related]
4. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU. J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379 [Abstract] [Full Text] [Related]
5. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, Supaphol P. Macromol Biosci; 2006 Jan 05; 6(1):70-7. PubMed ID: 16374772 [Abstract] [Full Text] [Related]
6. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Kim GH. Biomed Mater; 2008 Jun 05; 3(2):025010. PubMed ID: 18458365 [Abstract] [Full Text] [Related]
7. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I. Acta Biomater; 2011 Feb 05; 7(2):809-20. PubMed ID: 20849985 [Abstract] [Full Text] [Related]
8. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA, Rizkalla AS, Mequanint K. Langmuir; 2010 Dec 07; 26(23):18340-8. PubMed ID: 21050002 [Abstract] [Full Text] [Related]
11. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric. Seol YJ, Kim KH, Kim IA, Rhee SH. J Biomed Mater Res A; 2010 Aug 07; 94(2):649-59. PubMed ID: 20213814 [Abstract] [Full Text] [Related]
15. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Kasten P, Vogel J, Luginbühl R, Niemeyer P, Tonak M, Lorenz H, Helbig L, Weiss S, Fellenberg J, Leo A, Simank HG, Richter W. Biomaterials; 2005 Oct 07; 26(29):5879-89. PubMed ID: 15913762 [Abstract] [Full Text] [Related]
16. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites. Kikuchi M, Koyama Y, Yamada T, Imamura Y, Okada T, Shirahama N, Akita K, Takakuda K, Tanaka J. Biomaterials; 2004 Dec 07; 25(28):5979-86. PubMed ID: 15183612 [Abstract] [Full Text] [Related]
18. Effects of crystalline phase on the biological properties of collagen-hydroxyapatite composites. Zhang L, Tang P, Xu M, Zhang W, Chai W, Wang Y. Acta Biomater; 2010 Jun 07; 6(6):2189-99. PubMed ID: 20040387 [Abstract] [Full Text] [Related]
19. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV, Thomas V, Xu Y, Bellis S, Nyairo E, Dean D. Macromol Biosci; 2010 Apr 08; 10(4):433-44. PubMed ID: 20112236 [Abstract] [Full Text] [Related]