These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 19635358

  • 1. Effect of surface microstructures on the separation efficiency of neurotransmitters on a direct-printed capillary electrophoresis microchip.
    Lu Y, Hu YL, Xia XH.
    Talanta; 2009 Oct 15; 79(5):1270-5. PubMed ID: 19635358
    [Abstract] [Full Text] [Related]

  • 2. Fabrication of SU-8 based microchip electrophoresis with integrated electrochemical detection for neurotransmitters.
    Castaño-Alvarez M, Fernández-Abedul MT, Costa-García A, Agirregabiria M, Fernández LJ, Ruano-López JM, Barredo-Presa B.
    Talanta; 2009 Nov 15; 80(1):24-30. PubMed ID: 19782188
    [Abstract] [Full Text] [Related]

  • 3. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process.
    Liu AL, He FY, Wang K, Zhou T, Lu Y, Xia XH.
    Lab Chip; 2005 Sep 15; 5(9):974-8. PubMed ID: 16100582
    [Abstract] [Full Text] [Related]

  • 4. Improved separation efficiency of neurotransmitters on a native printed capillary electrophoresis microchip simply by manipulating electroosmotic flow.
    Yu H, He FY, Lu Y, Hu YL, Zhong HY, Xia XH.
    Talanta; 2008 Mar 15; 75(1):43-8. PubMed ID: 18371845
    [Abstract] [Full Text] [Related]

  • 5. New analytical portable instrument for microchip electrophoresis with electrochemical detection.
    Fernández-la-Villa A, Pozo-Ayuso DF, Castaño-Alvarez M.
    Electrophoresis; 2010 Aug 15; 31(15):2641-9. PubMed ID: 20665922
    [Abstract] [Full Text] [Related]

  • 6. Microchannel-electrode alignment and separation parameters comparison in microchip capillary electrophoresis by scanning electrochemical microscopy.
    Wang K, Xia XH.
    J Chromatogr A; 2006 Mar 31; 1110(1-2):222-6. PubMed ID: 16458907
    [Abstract] [Full Text] [Related]

  • 7. Modified Hadamard transform microchip electrophoresis.
    Guchardi R, Schwarz MA.
    Electrophoresis; 2005 Aug 31; 26(16):3151-9. PubMed ID: 16041700
    [Abstract] [Full Text] [Related]

  • 8. Polymer solutions and entropic-based systems for double-stranded DNA capillary electrophoresis and microchip electrophoresis.
    Xu F, Baba Y.
    Electrophoresis; 2004 Jul 31; 25(14):2332-45. PubMed ID: 15274016
    [Abstract] [Full Text] [Related]

  • 9. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation.
    Fogarty BA, Heppert KE, Cory TJ, Hulbutta KR, Martin RS, Lunte SM.
    Analyst; 2005 Jun 31; 130(6):924-30. PubMed ID: 15912242
    [Abstract] [Full Text] [Related]

  • 10. A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection.
    Wang Y, Chen H, He Q, Soper SA.
    Electrophoresis; 2008 May 31; 29(9):1881-8. PubMed ID: 18393335
    [Abstract] [Full Text] [Related]

  • 11. Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance.
    Shadpour H, Musyimi H, Chen J, Soper SA.
    J Chromatogr A; 2006 Apr 14; 1111(2):238-51. PubMed ID: 16569584
    [Abstract] [Full Text] [Related]

  • 12. Fabrication and evaluation of single- and dual-channel (Pi-design) microchip electrophoresis with electrochemical detection.
    Pozo-Ayuso DF, Castaño-Alvarez M, Fernández-la-Villa A, García-Granda M, Fernández-Abedul MT, Costa-García A, Rodríguez-García J.
    J Chromatogr A; 2008 Feb 08; 1180(1-2):193-202. PubMed ID: 18177663
    [Abstract] [Full Text] [Related]

  • 13. Design of separation length and electric field strength for high-speed DNA electrophoresis.
    Ni Y, Dou X, Cheng S, Zhu Y.
    Electrophoresis; 2011 Jan 08; 32(2):238-45. PubMed ID: 21254121
    [Abstract] [Full Text] [Related]

  • 14. Faster and improved microchip electrophoresis using a capillary bundle.
    Sun Y, Kwok YC, Nguyen NT.
    Electrophoresis; 2007 Dec 08; 28(24):4765-8. PubMed ID: 18072216
    [Abstract] [Full Text] [Related]

  • 15. Design and fabrication of integrated solid-phase extraction-zone electrophoresis microchip.
    Tuomikoski S, Virkkala N, Rovio S, Hokkanen A, Sirén H, Franssila S.
    J Chromatogr A; 2006 Apr 14; 1111(2):258-66. PubMed ID: 16257410
    [Abstract] [Full Text] [Related]

  • 16. Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner.
    Gabriel EF, do Lago CL, Gobbi ÅL, Carrilho E, Coltro WK.
    Electrophoresis; 2013 Aug 14; 34(15):2169-76. PubMed ID: 23712918
    [Abstract] [Full Text] [Related]

  • 17. Integration of on-chip peristaltic pumps and injection valves with microchip electrophoresis and electrochemical detection.
    Bowen AL, Martin RS.
    Electrophoresis; 2010 Aug 14; 31(15):2534-40. PubMed ID: 20665914
    [Abstract] [Full Text] [Related]

  • 18. Simple approaches to close the open structure of microfluidic chips and connecting them to the macro-world.
    Székely L, Guttman A.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep 01; 841(1-2):123-8. PubMed ID: 16597517
    [Abstract] [Full Text] [Related]

  • 19. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis.
    Liu J, Lee ML.
    Electrophoresis; 2006 Sep 01; 27(18):3533-46. PubMed ID: 16927422
    [Abstract] [Full Text] [Related]

  • 20. Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: a closer look.
    Petersen NJ, Nikolajsen RP, Mogensen KB, Kutter JP.
    Electrophoresis; 2004 Jan 01; 25(2):253-69. PubMed ID: 14743478
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.