These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 19635471
21. Amyloid-β oligomers interact with NMDA receptors containing GluN2B subunits and metabotropic glutamate receptor 1 in primary cortical neurons: Relevance to the synapse pathology of Alzheimer's disease. Taniguchi K, Yamamoto F, Amano A, Tamaoka A, Sanjo N, Yokota T, Kametani F, Araki W. Neurosci Res; 2022 Jul; 180():90-98. PubMed ID: 35257837 [Abstract] [Full Text] [Related]
22. Metabotropic Glutamate Receptors in Alzheimer's Disease Synaptic Dysfunction: Therapeutic Opportunities and Hope for the Future. Srivastava A, Das B, Yao AY, Yan R. J Alzheimers Dis; 2020 Jul; 78(4):1345-1361. PubMed ID: 33325389 [Abstract] [Full Text] [Related]
23. Shank3 is localized in axons and presynaptic specializations of developing hippocampal neurons and involved in the modulation of NMDA receptor levels at axon terminals. Halbedl S, Schoen M, Feiler MS, Boeckers TM, Schmeisser MJ. J Neurochem; 2016 Apr; 137(1):26-32. PubMed ID: 26725465 [Abstract] [Full Text] [Related]
24. Organization of postsynaptic density proteins and glutamate receptors in axodendritic and dendrodendritic synapses of the rat olfactory bulb. Sassoé-Pognetto M, Utvik JK, Camoletto P, Watanabe M, Stephenson FA, Bredt DS, Ottersen OP. J Comp Neurol; 2003 Aug 25; 463(3):237-48. PubMed ID: 12820158 [Abstract] [Full Text] [Related]
25. POSH regulates assembly of the NMDAR/PSD-95/Shank complex and synaptic function. Yao M, Meng M, Yang X, Wang S, Zhang H, Zhang F, Shi L, Zhang Y, Zhang X, Xu Z. Cell Rep; 2022 Apr 05; 39(1):110642. PubMed ID: 35385725 [Abstract] [Full Text] [Related]
26. Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin. Gomez LL, Alam S, Smith KE, Horne E, Dell'Acqua ML. J Neurosci; 2002 Aug 15; 22(16):7027-44. PubMed ID: 12177200 [Abstract] [Full Text] [Related]
27. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Colledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK, Lu H, Bear MF, Scott JD. Neuron; 2003 Oct 30; 40(3):595-607. PubMed ID: 14642282 [Abstract] [Full Text] [Related]
28. Decreased levels of NMDA but not AMPA receptors in the lipid-raft fraction of 3xTg-AD model of Alzheimer's disease: Relation to Arc/Arg3.1 protein expression. Morin JP, Díaz-Cintra S, Bermúdez-Rattoni F, Delint-Ramírez I. Neurochem Int; 2016 Nov 30; 100():159-163. PubMed ID: 27650435 [Abstract] [Full Text] [Related]
29. Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism. Bangash MA, Park JM, Melnikova T, Wang D, Jeon SK, Lee D, Syeda S, Kim J, Kouser M, Schwartz J, Cui Y, Zhao X, Speed HE, Kee SE, Tu JC, Hu JH, Petralia RS, Linden DJ, Powell CM, Savonenko A, Xiao B, Worley PF. Cell; 2011 May 27; 145(5):758-72. PubMed ID: 21565394 [Abstract] [Full Text] [Related]
30. Zinc Stabilizes Shank3 at the Postsynaptic Density of Hippocampal Synapses. Tao-Cheng JH, Toy D, Winters CA, Reese TS, Dosemeci A. PLoS One; 2016 May 27; 11(5):e0153979. PubMed ID: 27144302 [Abstract] [Full Text] [Related]
31. Eppendorf 2003 prize-winning essay. Ubiquitin and the deconstruction of synapses. Ehlers MD. Science; 2003 Oct 31; 302(5646):800-1. PubMed ID: 14593160 [No Abstract] [Full Text] [Related]
32. Partial Amelioration of Synaptic and Cognitive Deficits by Inhibiting Cofilin Dephosphorylation in an Animal Model of Alzheimer's Disease. Deng Y, Wei J, Cheng J, Zhong P, Xiong Z, Liu A, Lin L, Chen S, Yan Z. J Alzheimers Dis; 2016 Jun 28; 53(4):1419-32. PubMed ID: 27372643 [Abstract] [Full Text] [Related]
33. Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. Sala C, Futai K, Yamamoto K, Worley PF, Hayashi Y, Sheng M. J Neurosci; 2003 Jul 16; 23(15):6327-37. PubMed ID: 12867517 [Abstract] [Full Text] [Related]
34. Ontogeny of postsynaptic density proteins at glutamatergic synapses. Petralia RS, Sans N, Wang YX, Wenthold RJ. Mol Cell Neurosci; 2005 Jul 16; 29(3):436-52. PubMed ID: 15894489 [Abstract] [Full Text] [Related]
35. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. Bresler T, Shapira M, Boeckers T, Dresbach T, Futter M, Garner CC, Rosenblum K, Gundelfinger ED, Ziv NE. J Neurosci; 2004 Feb 11; 24(6):1507-20. PubMed ID: 14960624 [Abstract] [Full Text] [Related]
36. Quantification of postsynaptic density proteins: glutamate receptor subunits and scaffolding proteins. Shinohara Y. Hippocampus; 2012 May 11; 22(5):942-53. PubMed ID: 21594948 [Abstract] [Full Text] [Related]
37. Loss of F-box only protein 2 (Fbxo2) disrupts levels and localization of select NMDA receptor subunits, and promotes aberrant synaptic connectivity. Atkin G, Moore S, Lu Y, Nelson RF, Tipper N, Rajpal G, Hunt J, Tennant W, Hell JW, Murphy GG, Paulson H. J Neurosci; 2015 Apr 15; 35(15):6165-78. PubMed ID: 25878288 [Abstract] [Full Text] [Related]
38. Downregulation of postsynaptic density-95-interacting regulator of spine morphogenesis reduces glutamate-induced excitotoxicity by differentially regulating glutamate receptors in rat cortical neurons. Luo P, Yang Y, Liu W, Rao W, Bian H, Li X, Chen T, Liu M, Zhao Y, Dai S, Yan X, Fei Z. FEBS J; 2013 Dec 15; 280(23):6114-27. PubMed ID: 24103031 [Abstract] [Full Text] [Related]