These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 19647740
1. Cholesterol reverts Triton X-100 preferential solubilization of sphingomyelin over phosphatidylcholine: a 31P-NMR study. Ahyayauch H, Collado MI, Goñi FM, Lichtenberg D. FEBS Lett; 2009 Sep 03; 583(17):2859-64. PubMed ID: 19647740 [Abstract] [Full Text] [Related]
2. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR. Aussenac F, Tavares M, Dufourc EJ. Biochemistry; 2003 Feb 18; 42(6):1383-90. PubMed ID: 12578350 [Abstract] [Full Text] [Related]
3. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Sot J, Bagatolli LA, Goñi FM, Alonso A. Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266 [Abstract] [Full Text] [Related]
4. The onset of Triton X-100 solubilization of sphingomyelin/ceramide bilayers: effects of temperature and composition. Ahyayauch H, Arnulphi C, Sot J, Alonso A, Goñi FM. Chem Phys Lipids; 2013 Feb 01; 167-168():57-61. PubMed ID: 23453949 [Abstract] [Full Text] [Related]
5. Interactions of Triton X-100 with sphingomyelin and phosphatidylcholine monolayers: influence of the cholesterol content. Abi-Rizk G, Besson F. Colloids Surf B Biointerfaces; 2008 Oct 15; 66(2):163-7. PubMed ID: 18644701 [Abstract] [Full Text] [Related]
6. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles. Sot J, Ibarguren M, Busto JV, Montes LR, Goñi FM, Alonso A. FEBS Lett; 2008 Sep 22; 582(21-22):3230-6. PubMed ID: 18755187 [Abstract] [Full Text] [Related]
7. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I. Massey JB, Pownall HJ. Biochemistry; 2005 Aug 02; 44(30):10423-33. PubMed ID: 16042420 [Abstract] [Full Text] [Related]
8. Solubilization of binary lipid mixtures by the detergent Triton X-100: the role of cholesterol. Mattei B, França AD, Riske KA. Langmuir; 2015 Aug 02; 31(1):378-86. PubMed ID: 25474726 [Abstract] [Full Text] [Related]
9. The effect of cholesterol on the solubilization of phosphatidylcholine bilayers by the non-ionic surfactant Triton X-100. Schnitzer E, Kozlov MM, Lichtenberg D. Chem Phys Lipids; 2005 May 02; 135(1):69-82. PubMed ID: 15854626 [Abstract] [Full Text] [Related]
10. Effect of Triton X-100 on Raft-Like Lipid Mixtures: Phase Separation and Selective Solubilization. Caritá AC, Mattei B, Domingues CC, de Paula E, Riske KA. Langmuir; 2017 Jul 25; 33(29):7312-7321. PubMed ID: 28474888 [Abstract] [Full Text] [Related]
11. Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine. Arnulphi C, Sot J, García-Pacios M, Arrondo JL, Alonso A, Goñi FM. Biophys J; 2007 Nov 15; 93(10):3504-14. PubMed ID: 17675347 [Abstract] [Full Text] [Related]
12. Molecular dynamics simulations of bilayers containing mixtures of sphingomyelin with cholesterol and phosphatidylcholine with cholesterol. Zhang Z, Bhide SY, Berkowitz ML. J Phys Chem B; 2007 Nov 08; 111(44):12888-97. PubMed ID: 17941659 [Abstract] [Full Text] [Related]
13. Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins. Li XM, Momsen MM, Smaby JM, Brockman HL, Brown RE. Biochemistry; 2001 May 22; 40(20):5954-63. PubMed ID: 11352730 [Abstract] [Full Text] [Related]
14. High-melting lipid mixtures and the origin of detergent-resistant membranes studied with temperature-solubilization diagrams. Sot J, Manni MM, Viguera AR, Castañeda V, Cano A, Alonso C, Gil D, Valle M, Alonso A, Goñi FM. Biophys J; 2014 Dec 16; 107(12):2828-2837. PubMed ID: 25517149 [Abstract] [Full Text] [Related]
15. Detergent solubilization of bovine erythrocytes. Comparison between the insoluble material and the intact membrane. Rodi PM, Cabeza MS, Gennaro AM. Biophys Chem; 2006 Jul 20; 122(2):114-22. PubMed ID: 16580771 [Abstract] [Full Text] [Related]
16. Distinguishing individual lipid headgroup mobility and phase transitions in raft-forming lipid mixtures with 31P MAS NMR. Holland GP, McIntyre SK, Alam TM. Biophys J; 2006 Jun 01; 90(11):4248-60. PubMed ID: 16533851 [Abstract] [Full Text] [Related]
17. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies. Róg T, Murzyn K, Karttunen M, Pasenkiewicz-Gierula M. J Pept Sci; 2008 Apr 01; 14(4):374-82. PubMed ID: 17985365 [Abstract] [Full Text] [Related]
18. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Gandhavadi M, Allende D, Vidal A, Simon SA, McIntosh TJ. Biophys J; 2002 Mar 01; 82(3):1469-82. PubMed ID: 11867462 [Abstract] [Full Text] [Related]
20. Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins. Tsamaloukas A, Szadkowska H, Heerklotz H. Biophys J; 2006 Jun 15; 90(12):4479-87. PubMed ID: 16581844 [Abstract] [Full Text] [Related] Page: [Next] [New Search]