These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 19647740
21. The influence of membrane composition on the solubilizing effects of Triton X-100. Urbaneja MA, Nieva JL, Goñi FM, Alonso A. Biochim Biophys Acta; 1987 Nov 13; 904(2):337-45. PubMed ID: 3663677 [Abstract] [Full Text] [Related]
22. Phosphatidylcholine structure determines cholesterol solubility and lipid polymorphism. Epand RM, Epand RF, Hughes DW, Sayer BG, Borochov N, Bach D, Wachtel E. Chem Phys Lipids; 2005 May 13; 135(1):39-53. PubMed ID: 15854624 [Abstract] [Full Text] [Related]
23. Fusogenicity of Naja naja atra cardiotoxin-like basic protein on sphingomyelin vesicles containing oxidized phosphatidylcholine and cholesterol. Kao PH, Chen YJ, Yang SY, Lin SR, Hu WP, Chang LS. J Biochem; 2013 Jun 13; 153(6):523-33. PubMed ID: 23426438 [Abstract] [Full Text] [Related]
24. Interactions between nonionic Triton X surfactants and cholesterol-containing phosphatidylcholine liposomes. Chern CS, Chiu HC, Yang YS. J Colloid Interface Sci; 2006 Oct 01; 302(1):335-40. PubMed ID: 16839562 [Abstract] [Full Text] [Related]
25. Multi-dimensional 1H-13C HETCOR and FSLG-HETCOR NMR study of sphingomyelin bilayers containing cholesterol in the gel and liquid crystalline states. Holland GP, Alam TM. J Magn Reson; 2006 Aug 01; 181(2):316-26. PubMed ID: 16798032 [Abstract] [Full Text] [Related]
26. Different interactions of egg-yolk phosphatidylcholine and sphingomyelin with detergent bile salts. Nibbering CP, Frederik PM, van Berge-Henegouwen GP, van Veen HA, van Marle J, van Erpecum KJ. Biochim Biophys Acta; 2002 Jul 11; 1583(2):213-20. PubMed ID: 12117565 [Abstract] [Full Text] [Related]
27. Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and (2)H NMR Spectra. Yasuda T, Matsumori N, Tsuchikawa H, Lönnfors M, Nyholm TK, Slotte JP, Murata M. Langmuir; 2015 Dec 29; 31(51):13783-92. PubMed ID: 26639840 [Abstract] [Full Text] [Related]
28. The magnitude of condensation induced by cholesterol on the mixtures of sphingomyelin with phosphatidylcholines-Study on ternary and quaternary systems. Wydro P. Colloids Surf B Biointerfaces; 2011 Feb 01; 82(2):594-601. PubMed ID: 21074382 [Abstract] [Full Text] [Related]
29. Structural diversity of sphingomyelin microdomains. Giocondi MC, Boichot S, Plénat T, Le Grimellec CC. Ultramicroscopy; 2004 Aug 01; 100(3-4):135-43. PubMed ID: 15231303 [Abstract] [Full Text] [Related]
30. Surfactant effects of chlorpromazine and imipramine on lipid bilayers containing sphingomyelin and cholesterol. Ahyayauch H, Requero MA, Alonso A, Bennouna M, Goñi FM. J Colloid Interface Sci; 2002 Dec 15; 256(2):284-9. PubMed ID: 12573633 [Abstract] [Full Text] [Related]
31. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. Heerklotz H, Szadkowska H, Anderson T, Seelig J. J Mol Biol; 2003 Jun 13; 329(4):793-9. PubMed ID: 12787678 [Abstract] [Full Text] [Related]
32. Changes in phosphatidylcholine liposomes caused by a mixture of Triton X-100 and sodium dodecyl sulfate. de la Maza A, Parra JL. Biochim Biophys Acta; 1996 Apr 19; 1300(2):125-34. PubMed ID: 8652638 [Abstract] [Full Text] [Related]
33. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers. Devanathan S, Salamon Z, Lindblom G, Gröbner G, Tollin G. FEBS J; 2006 Apr 19; 273(7):1389-402. PubMed ID: 16689927 [Abstract] [Full Text] [Related]
34. Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy. El Kirat K, Morandat S. Biochim Biophys Acta; 2007 Sep 19; 1768(9):2300-9. PubMed ID: 17560898 [Abstract] [Full Text] [Related]
35. Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs. Sudbrack TP, Archilha NL, Itri R, Riske KA. J Phys Chem B; 2011 Jan 20; 115(2):269-77. PubMed ID: 21171656 [Abstract] [Full Text] [Related]
36. Structures of biologically active oxysterols determine their differential effects on phospholipid membranes. Massey JB, Pownall HJ. Biochemistry; 2006 Sep 05; 45(35):10747-58. PubMed ID: 16939227 [Abstract] [Full Text] [Related]
37. Membrane resistance to Triton X-100 explored by real-time atomic force microscopy. Morandat S, El Kirat K. Langmuir; 2006 Jun 20; 22(13):5786-91. PubMed ID: 16768509 [Abstract] [Full Text] [Related]
38. Asymmetric distribution of phosphatidylcholine and sphingomyelin between micellar and vesicular phases. Potential implications for canalicular bile formation. Eckhardt ER, Moschetta A, Renooij W, Goerdayal SS, van Berge-Henegouwen GP, van Erpecum KJ. J Lipid Res; 1999 Nov 20; 40(11):2022-33. PubMed ID: 10553006 [Abstract] [Full Text] [Related]
39. Phase separation is induced by phenothiazine derivatives in phospholipid/sphingomyelin/cholesterol mixtures containing low levels of cholesterol and sphingomyelin. Hendrich AB, Michalak K, Wesołowska O. Biophys Chem; 2007 Oct 20; 130(1-2):32-40. PubMed ID: 17662517 [Abstract] [Full Text] [Related]
40. Sphingomyelin/phosphatidylcholine and cholesterol interactions studied by imaging mass spectrometry. Zheng L, McQuaw CM, Ewing AG, Winograd N. J Am Chem Soc; 2007 Dec 26; 129(51):15730-1. PubMed ID: 18044889 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]