These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
249 related items for PubMed ID: 19651913
21. Structural insights into the subclass B3 metallo-β-lactamase SMB-1 and the mode of inhibition by the common metallo-β-lactamase inhibitor mercaptoacetate. Wachino J, Yamaguchi Y, Mori S, Kurosaki H, Arakawa Y, Shibayama K. Antimicrob Agents Chemother; 2013 Jan; 57(1):101-9. PubMed ID: 23070156 [Abstract] [Full Text] [Related]
22. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. Hernandez Valladares M, Felici A, Weber G, Adolph HW, Zeppezauer M, Rossolini GM, Amicosante G, Frère JM, Galleni M. Biochemistry; 1997 Sep 23; 36(38):11534-41. PubMed ID: 9298974 [Abstract] [Full Text] [Related]
23. X-ray absorption spectroscopy of the zinc-binding sites in the class B2 metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria. Costello AL, Sharma NP, Yang KW, Crowder MW, Tierney DL. Biochemistry; 2006 Nov 14; 45(45):13650-8. PubMed ID: 17087519 [Abstract] [Full Text] [Related]
24. B1-Metallo-β-Lactamases: Where Do We Stand? Mojica MF, Bonomo RA, Fast W. Curr Drug Targets; 2016 Nov 14; 17(9):1029-50. PubMed ID: 26424398 [Abstract] [Full Text] [Related]
25. Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis. Jacquin O, Balbeur D, Damblon C, Marchot P, De Pauw E, Roberts GC, Frère JM, Matagne A. J Mol Biol; 2009 Oct 09; 392(5):1278-91. PubMed ID: 19665032 [Abstract] [Full Text] [Related]
26. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism. Davies AM, Rasia RM, Vila AJ, Sutton BJ, Fabiane SM. Biochemistry; 2005 Mar 29; 44(12):4841-9. PubMed ID: 15779910 [Abstract] [Full Text] [Related]
27. Kinetic Studies on CphA Mutants Reveal the Role of the P158-P172 Loop in Activity versus Carbapenems. Bottoni C, Perilli M, Marcoccia F, Piccirilli A, Pellegrini C, Colapietro M, Sabatini A, Celenza G, Kerff F, Amicosante G, Galleni M, Mercuri PS. Antimicrob Agents Chemother; 2016 May 29; 60(5):3123-6. PubMed ID: 26883708 [Abstract] [Full Text] [Related]
28. Antibiotic binding to monozinc CphA beta-lactamase from Aeromonas hydropila: quantum mechanical/molecular mechanical and density functional theory studies. Xu D, Zhou Y, Xie D, Guo H. J Med Chem; 2005 Oct 20; 48(21):6679-89. PubMed ID: 16220984 [Abstract] [Full Text] [Related]
30. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-β-Lactamase is Fragile to Mutations. Sun Z, Mehta SC, Adamski CJ, Gibbs RA, Palzkill T. Sci Rep; 2016 Sep 12; 6():33195. PubMed ID: 27616327 [Abstract] [Full Text] [Related]
31. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis. Li Z, Rasmussen BA, Herzberg O. Protein Sci; 1999 Jan 12; 8(1):249-52. PubMed ID: 10210203 [Abstract] [Full Text] [Related]
32. Zinc ion-induced domain organization in metallo-beta-lactamases: a flexible "zinc arm" for rapid metal ion transfer? Selevsek N, Rival S, Tholey A, Heinzle E, Heinz U, Hemmingsen L, Adolph HW. J Biol Chem; 2009 Jun 12; 284(24):16419-16431. PubMed ID: 19395380 [Abstract] [Full Text] [Related]
35. Spectroscopic studies on cobalt(II)-substituted metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria. Crawford PA, Yang KW, Sharma N, Bennett B, Crowder MW. Biochemistry; 2005 Apr 05; 44(13):5168-76. PubMed ID: 15794654 [Abstract] [Full Text] [Related]
36. Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-beta-lactamases. Murphy TA, Catto LE, Halford SE, Hadfield AT, Minor W, Walsh TR, Spencer J. J Mol Biol; 2006 Mar 31; 357(3):890-903. PubMed ID: 16460758 [Abstract] [Full Text] [Related]
37. Crystal structure of the mobile metallo-β-lactamase AIM-1 from Pseudomonas aeruginosa: insights into antibiotic binding and the role of Gln157. Leiros HK, Borra PS, Brandsdal BO, Edvardsen KS, Spencer J, Walsh TR, Samuelsen O. Antimicrob Agents Chemother; 2012 Aug 31; 56(8):4341-53. PubMed ID: 22664968 [Abstract] [Full Text] [Related]
38. Characterization of purified New Delhi metallo-β-lactamase-1. Thomas PW, Zheng M, Wu S, Guo H, Liu D, Xu D, Fast W. Biochemistry; 2011 Nov 22; 50(46):10102-13. PubMed ID: 22029287 [Abstract] [Full Text] [Related]
39. Kinetic and spectroscopic characterization of native and metal-substituted beta-lactamase from Aeromonas hydrophila AE036. Hernandez Valladares M, Kiefer M, Heinz U, Soto RP, Meyer-Klaucke W, Nolting HF, Zeppezauer M, Galleni M, Frère JM, Rossolini GM, Amicosante G, Adolph HW. FEBS Lett; 2000 Feb 11; 467(2-3):221-5. PubMed ID: 10675542 [Abstract] [Full Text] [Related]
40. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Concha NO, Janson CA, Rowling P, Pearson S, Cheever CA, Clarke BP, Lewis C, Galleni M, Frère JM, Payne DJ, Bateson JH, Abdel-Meguid SS. Biochemistry; 2000 Apr 18; 39(15):4288-98. PubMed ID: 10757977 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]