These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
372 related items for PubMed ID: 19655705
1. The folding pathway of onconase is directed by a conserved intermediate. Schulenburg C, Löw C, Weininger U, Mrestani-Klaus C, Hofmann H, Balbach J, Ulbrich-Hofmann R, Arnold U. Biochemistry; 2009 Sep 08; 48(35):8449-57. PubMed ID: 19655705 [Abstract] [Full Text] [Related]
2. Impact of the C-terminal disulfide bond on the folding and stability of onconase. Schulenburg C, Weininger U, Neumann P, Meiselbach H, Stubbs MT, Sticht H, Balbach J, Ulbrich-Hofmann R, Arnold U. Chembiochem; 2010 May 03; 11(7):978-86. PubMed ID: 20349493 [Abstract] [Full Text] [Related]
3. Consequences of proline-to-alanine substitutions for the stability and refolding of onconase. Hacke M, Gruber T, Schulenburg C, Balbach J, Arnold U. FEBS J; 2013 Sep 03; 280(18):4454-62. PubMed ID: 23796075 [Abstract] [Full Text] [Related]
5. Contribution of structural peculiarities of onconase to its high stability and folding kinetics. Arnold U, Schulenburg C, Schmidt D, Ulbrich-Hofmann R. Biochemistry; 2006 Mar 21; 45(11):3580-7. PubMed ID: 16533040 [Abstract] [Full Text] [Related]
7. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms. Shimotakahara S, Rios CB, Laity JH, Zimmerman DE, Scheraga HA, Montelione GT. Biochemistry; 1997 Jun 10; 36(23):6915-29. PubMed ID: 9188686 [Abstract] [Full Text] [Related]
8. Identification of three phases in Onconase refolding. Schulenburg C, Martinez-Senac MM, Löw C, Golbik R, Ulbrich-Hofmann R, Arnold U. FEBS J; 2007 Nov 10; 274(22):5826-33. PubMed ID: 17944937 [Abstract] [Full Text] [Related]
10. Oxidative folding pathway of onconase, a ribonuclease homologue: insight into oxidative folding mechanisms from a study of two homologues. Gahl RF, Scheraga HA. Biochemistry; 2009 Mar 31; 48(12):2740-51. PubMed ID: 19309163 [Abstract] [Full Text] [Related]
13. Dissimilarity in the oxidative folding of onconase and ribonuclease A, two structural homologues. Gahl RF, Narayan M, Xu G, Scheraga HA. Protein Eng Des Sel; 2008 Apr 31; 21(4):223-31. PubMed ID: 18245105 [Abstract] [Full Text] [Related]
14. Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways. Talluri S, Rothwarf DM, Scheraga HA. Biochemistry; 1994 Aug 30; 33(34):10437-49. PubMed ID: 8068682 [Abstract] [Full Text] [Related]
16. Localization and analysis of nonpolar regions in onconase. Kolbanovskaya EY, Terwisscha van Scheltinga AC, Mukhortov VG, Ardelt W, Beintema JJ, Karpeisky MY. Cell Mol Life Sci; 2000 Aug 30; 57(8-9):1306-16. PubMed ID: 11028920 [Abstract] [Full Text] [Related]
17. Stability and folding of amphibian ribonuclease A superfamily members in comparison with mammalian homologues. Arnold U. FEBS J; 2014 Aug 30; 281(16):3559-75. PubMed ID: 24966023 [Abstract] [Full Text] [Related]
19. Specifically collapsed intermediate in the early stage of the folding of ribonuclease A. Kimura T, Akiyama S, Uzawa T, Ishimori K, Morishima I, Fujisawa T, Takahashi S. J Mol Biol; 2005 Jul 08; 350(2):349-62. PubMed ID: 15935376 [Abstract] [Full Text] [Related]