These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 19659576

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane.
    Umebayashi K, Nakano A.
    J Cell Biol; 2003 Jun 23; 161(6):1117-31. PubMed ID: 12810702
    [Abstract] [Full Text] [Related]

  • 3. TORC1 ensures membrane trafficking of Tat2 tryptophan permease via a novel transcriptional activator Vhr2 in budding yeast.
    Daicho K, Koike N, Ott RG, Daum G, Ushimaru T.
    Cell Signal; 2020 Apr 23; 68():109542. PubMed ID: 31954176
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. [Regulation role of sterol C-24 methyltransferase and sterol C-8 isomerase in the ergosterol biosynthesis of Saccharomyces cerevisiae].
    Zhang Z, He X, Li W, Lu Y, Wang Z, Zhang B.
    Wei Sheng Wu Xue Bao; 2009 Aug 23; 49(8):1063-8. PubMed ID: 19835168
    [Abstract] [Full Text] [Related]

  • 8. Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2.
    Abe F, Iida H.
    Mol Cell Biol; 2003 Nov 23; 23(21):7566-84. PubMed ID: 14560004
    [Abstract] [Full Text] [Related]

  • 9. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast.
    Beck T, Schmidt A, Hall MN.
    J Cell Biol; 1999 Sep 20; 146(6):1227-38. PubMed ID: 10491387
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Yeast sterol C8-C7 isomerase: identification and characterization of a high-affinity binding site for enzyme inhibitors.
    Moebius FF, Bermoser K, Reiter RJ, Hanner M, Glossmann H.
    Biochemistry; 1996 Dec 24; 35(51):16871-8. PubMed ID: 8988026
    [Abstract] [Full Text] [Related]

  • 12. The N- and C-terminal mutations in tryptophan permease Tat2 confer cell growth in Saccharomyces cerevisiae under high-pressure and low-temperature conditions.
    Nagayama A, Kato C, Abe F.
    Extremophiles; 2004 Apr 24; 8(2):143-9. PubMed ID: 15064981
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A role for yeast oxysterol-binding protein homologs in endocytosis and in the maintenance of intracellular sterol-lipid distribution.
    Beh CT, Rine J.
    J Cell Sci; 2004 Jun 15; 117(Pt 14):2983-96. PubMed ID: 15173322
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Structural and functional implications of the yeast high-affinity tryptophan permease Tat2.
    Kanda N, Abe F.
    Biochemistry; 2013 Jun 25; 52(25):4296-307. PubMed ID: 23768406
    [Abstract] [Full Text] [Related]

  • 18. Role of a novel endoplasmic reticulum-resident glycoprotein Mtc6/Ehg2 in high-pressure growth: stability of tryptophan permease Tat2 in Saccharomyces cerevisiae.
    Kato Y, Mioka T, Uemura S, Abe F.
    Biosci Biotechnol Biochem; 2024 Aug 26; 88(9):1055-1063. PubMed ID: 38918055
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Generic sorting of raft lipids into secretory vesicles in yeast.
    Surma MA, Klose C, Klemm RW, Ejsing CS, Simons K.
    Traffic; 2011 Sep 26; 12(9):1139-47. PubMed ID: 21575114
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.