These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
299 related items for PubMed ID: 19680943
21. Pesticide residues in grapes from vineyards included in integrated pest management in Slovenia. Cesnik HB, Gregorcic A, Cus F. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Apr; 25(4):438-43. PubMed ID: 18348043 [Abstract] [Full Text] [Related]
22. Biological control of grey mould (Botrytis cinerea) with the antagonist Ulocladium atrum. Metz C, Oerke EC, Dehne HW. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002 Apr; 67(2):353-9. PubMed ID: 12701443 [Abstract] [Full Text] [Related]
23. Evaluation of anilinopyrimidine and other fungicides for control of grey mould (Botrytis cinerea) in container-grown Calluna vulgaris. McQuilken MP, Thomson J. Pest Manag Sci; 2008 Jul; 64(7):748-54. PubMed ID: 18286666 [Abstract] [Full Text] [Related]
24. Fungicide dissipation curves in winemaking processes with and without maceration step. Fernández MJ, Oliva J, Barba A, Cámara MA. J Agric Food Chem; 2005 Feb 09; 53(3):804-11. PubMed ID: 15686437 [Abstract] [Full Text] [Related]
25. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger S, Mernke D, Schoonbeek HJ, Pradier JM, Leroux P, De Waard MA, Hahn M. PLoS Pathog; 2009 Dec 09; 5(12):e1000696. PubMed ID: 20019793 [Abstract] [Full Text] [Related]
26. Removal of pesticides from white wine by the use of fining agents and filtration. Oliva J, Payá P, Cámara MA, Barba A. Commun Agric Appl Biol Sci; 2007 Dec 09; 72(2):171-80. PubMed ID: 18399438 [Abstract] [Full Text] [Related]
27. Screening of grapes and wine for azoxystrobin, kresoxim-methyl and trifloxystrobin fungicides by HPLC with diode array detection. De Melo Abreu S, Correia M, Herbert P, Santos L, Alves A. Food Addit Contam; 2005 Jun 09; 22(6):549-56. PubMed ID: 16019828 [Abstract] [Full Text] [Related]
28. Two promoter rearrangements in a drug efflux transporter gene are responsible for the appearance and spread of multidrug resistance phenotype MDR2 in Botrytis cinerea isolates in French and German vineyards. Mernke D, Dahm S, Walker AS, Lalève A, Fillinger S, Leroch M, Hahn M. Phytopathology; 2011 Oct 09; 101(10):1176-83. PubMed ID: 21679037 [Abstract] [Full Text] [Related]
29. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards. Calvo-Garrido C, Usall J, Viñas I, Elmer PA, Cases E, Teixidó N. Pest Manag Sci; 2014 Jun 09; 70(6):922-30. PubMed ID: 23963875 [Abstract] [Full Text] [Related]
30. Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. Qin G, Zong Y, Chen Q, Hua D, Tian S. Int J Food Microbiol; 2010 Mar 31; 138(1-2):145-50. PubMed ID: 20060611 [Abstract] [Full Text] [Related]
31. Fungicide residues in pears, apples and grapes after post harvest treatments by thermonebulization. Pompi V, Donnarumma L, Rossi E, Rosati S. Commun Agric Appl Biol Sci; 2005 Mar 31; 70(4):1067-73. PubMed ID: 16628956 [Abstract] [Full Text] [Related]
32. Removal of famoxadone, fluquinconazole and trifloxystrobin residues in red wines: effects of clarification and filtration processes. Oliva J, Payá P, Cámara MA, Barba A. J Environ Sci Health B; 2007 Mar 31; 42(7):775-81. PubMed ID: 17763033 [Abstract] [Full Text] [Related]
33. Fungal adaptation to contemporary fungicide applications: the case of Botrytis cinerea populations from Champagne vineyards (France). Walker AS, Ravigne V, Rieux A, Ali S, Carpentier F, Fournier E. Mol Ecol; 2017 Apr 31; 26(7):1919-1935. PubMed ID: 28231406 [Abstract] [Full Text] [Related]
34. Residues of insecticides, and fungicides in fruit produced in Ontario, Canada, 1986-1988. Frank R, Braun HE, Ripley BD. Food Addit Contam; 1990 Apr 31; 7(5):637-48. PubMed ID: 2253808 [Abstract] [Full Text] [Related]
35. Influence of several fungicides on the antioxidant activity of red wines (var. Monastrell). Oliva J, Mulero J, Payá P, Cámara MA, Barba A. J Environ Sci Health B; 2009 Aug 31; 44(6):546-52. PubMed ID: 20183061 [Abstract] [Full Text] [Related]
36. Use of biocontrol agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards. Rotolo C, De Miccolis Angelini RM, Dongiovanni C, Pollastro S, Fumarola G, Di Carolo M, Perrelli D, Natale P, Faretra F. Pest Manag Sci; 2018 Mar 31; 74(3):715-725. PubMed ID: 29044981 [Abstract] [Full Text] [Related]
37. [Analysis of residues of the fungicide cymoxanil in grapes using multicolumn HPLC]. Lindner W, Posch W, Lechner W. Z Lebensm Unters Forsch; 1984 Jun 31; 178(6):471-4. PubMed ID: 6485553 [Abstract] [Full Text] [Related]
38. Fate and distribution of pyrimethanil, metalaxyl, dichlofluanid and penconazol fungicides from treated grapes intended for winemaking. Vaquero-Fernández L, Sanz-Asensio J, López-Alonso M, Martínez-Soria MT. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Feb 31; 26(2):164-71. PubMed ID: 19680886 [Abstract] [Full Text] [Related]
39. Pesticide residues in grapes and wine in Italy. Cabras P, Conte E. Food Addit Contam; 2001 Oct 31; 18(10):880-5. PubMed ID: 11569768 [Abstract] [Full Text] [Related]
40. Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. De Miccolis Angelini RM, Rotolo C, Masiello M, Gerin D, Pollastro S, Faretra F. Pest Manag Sci; 2014 Dec 31; 70(12):1785-96. PubMed ID: 24338954 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]