These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
299 related items for PubMed ID: 19680943
41. Influence of fenamidone, indoxacarb, pyraclostrobin, and deltamethrin on the population of natural yeast microflora during winemaking of two sardinian grape cultivars. Zara S, Caboni P, Orro D, Farris GA, Pirisi F, Angioni A. J Environ Sci Health B; 2011; 46(6):491-7. PubMed ID: 21726147 [Abstract] [Full Text] [Related]
42. Screening preharvest/postharvest strategies to prevent fruit rot decay. Vorstermans B, Creemers P. Commun Agric Appl Biol Sci; 2007; 72(4):909-15. PubMed ID: 18396828 [Abstract] [Full Text] [Related]
43. Plant protection product residues in red grapes and Teran PTP wine. Baša Česnik H, Velikonja Bolta Š, Lisjak K. Food Addit Contam Part B Surveill; 2015; 8(2):113-22. PubMed ID: 25559701 [Abstract] [Full Text] [Related]
44. Comparative protein profile analysis of wines made from Botrytis cinerea infected and healthy grapes reveals a novel biomarker for gushing in sparkling wine. Kupfer VM, Vogt EI, Ziegler T, Vogel RF, Niessen L. Food Res Int; 2017 Sep; 99(Pt 1):501-509. PubMed ID: 28784511 [Abstract] [Full Text] [Related]
45. Effects of the origins of Botrytis cinerea on earthy aromas from grape broth media further inoculated with Penicillium expansum. Morales-Valle H, Silva LC, Paterson RR, Venâncio A, Lima N. Food Microbiol; 2011 Aug; 28(5):1048-53. PubMed ID: 21569951 [Abstract] [Full Text] [Related]
46. Residue-free wines: fate of some quinone outside inhibitor (QoI) fungicides in the winemaking process. Garau VL, De Melo Abreu S, Caboni P, Angioni A, Alves A, Cabras P. J Agric Food Chem; 2009 Mar 25; 57(6):2329-33. PubMed ID: 19292467 [Abstract] [Full Text] [Related]
47. Residues of azoxystrobin from grapes to raisins. Lentza-Rizos C, Avramides EJ, Kokkinaki K. J Agric Food Chem; 2006 Jan 11; 54(1):138-41. PubMed ID: 16390190 [Abstract] [Full Text] [Related]
48. Edible coating composed of chitosan and Salvia fruticosa Mill. extract for the control of grey mould of table grapes. Kanetis L, Exarchou V, Charalambous Z, Goulas V. J Sci Food Agric; 2017 Jan 11; 97(2):452-460. PubMed ID: 27059447 [Abstract] [Full Text] [Related]
49. Effects of clarification and filtration processes on the removal of fungicide residues in red wines (var. Monastrell). Fernández MJ, Oliva J, Barba A, Cámara MA. J Agric Food Chem; 2005 Jul 27; 53(15):6156-61. PubMed ID: 16029011 [Abstract] [Full Text] [Related]
50. A network meta-analysis provides new insight into fungicide scheduling for the control of Botrytis cinerea in vineyards. González-Domínguez E, Fedele G, Caffi T, Delière L, Sauris P, Gramaje D, Ramos-Saez de Ojer JL, Díaz-Losada E, Díez-Navajas AM, Bengoa P, Rossi V. Pest Manag Sci; 2019 Feb 27; 75(2):324-332. PubMed ID: 29885027 [Abstract] [Full Text] [Related]
51. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M, Chapeland F. Pest Manag Sci; 2002 Sep 27; 58(9):876-88. PubMed ID: 12233177 [Abstract] [Full Text] [Related]
52. Managing ochratoxin A risk in the grape-wine food chain. Visconti A, Perrone G, Cozzi G, Solfrizzo M. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Feb 27; 25(2):193-202. PubMed ID: 18286409 [Abstract] [Full Text] [Related]
53. Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains. Billard A, Fillinger S, Leroux P, Lachaise H, Beffa R, Debieu D. Pest Manag Sci; 2012 May 27; 68(5):684-91. PubMed ID: 22045588 [Abstract] [Full Text] [Related]
54. Influence of carvacrol on survival of Botrytis cinerea inoculated in table grapes. Martínez-Romero D, Guillén F, Valverde JM, Bailén G, Zapata P, Serrano M, Castillo S, Valero D. Int J Food Microbiol; 2007 Apr 10; 115(2):144-8. PubMed ID: 17141907 [Abstract] [Full Text] [Related]
56. Degradation kinetics and safety evaluation of tetraconazole and difenoconazole residues in grape. Banerjee K, Oulkar DP, Patil SH, Dasgupta S, Adsule PG. Pest Manag Sci; 2008 Mar 10; 64(3):283-9. PubMed ID: 18200613 [Abstract] [Full Text] [Related]
57. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Alizadeh HR, Sharifi-Tehrani A, Hedjaroude GA. Commun Agric Appl Biol Sci; 2007 Mar 10; 72(4):795-800. PubMed ID: 18396812 [Abstract] [Full Text] [Related]
58. Fate of quinoxyfen residues in grapes, wine, and their processing products. Cabras P, Angioni A, Garau VL, Pirisi FM, Cabitza F, Pala M, Farris GA. J Agric Food Chem; 2000 Dec 10; 48(12):6128-31. PubMed ID: 11312786 [Abstract] [Full Text] [Related]
59. A new post-harvest fungicide to control fruit rot on apple and pear. Vorstermans B, Creemers P, Bylemans D, Garnier A. Commun Agric Appl Biol Sci; 2005 Dec 10; 70(3):79-89. PubMed ID: 16637162 [Abstract] [Full Text] [Related]
60. Pesticide residues in grapes, wine, and their processing products. Cabras P, Angioni A. J Agric Food Chem; 2000 Apr 10; 48(4):967-73. PubMed ID: 10775335 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]