These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
258 related items for PubMed ID: 19682437
1. Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Garcia-Martinez EM, Sanz-Blasco S, Karachitos A, Bandez MJ, Fernandez-Gomez FJ, Perez-Alvarez S, de Mera RM, Jordan MJ, Aguirre N, Galindo MF, Villalobos C, Navarro A, Kmita H, Jordán J. Biochem Pharmacol; 2010 Jan 15; 79(2):239-50. PubMed ID: 19682437 [Abstract] [Full Text] [Related]
2. Minocycline fails to protect cerebellar granular cell cultures against malonate-induced cell death. Fernandez-Gomez FJ, Gomez-Lazaro M, Pastor D, Calvo S, Aguirre N, Galindo MF, Jordán J. Neurobiol Dis; 2005 Nov 15; 20(2):384-91. PubMed ID: 16242643 [Abstract] [Full Text] [Related]
3. Taurine increases mitochondrial buffering of calcium: role in neuroprotection. El Idrissi A. Amino Acids; 2008 Feb 15; 34(2):321-8. PubMed ID: 16955229 [Abstract] [Full Text] [Related]
4. Carbamazepine inhibition of N-methyl-D-aspartate-evoked calcium influx in rat cerebellar granule cells. Hough CJ, Irwin RP, Gao XM, Rogawski MA, Chuang DM. J Pharmacol Exp Ther; 1996 Jan 15; 276(1):143-9. PubMed ID: 8558424 [Abstract] [Full Text] [Related]
5. Neuroprotectant minocycline depresses glutamatergic neurotransmission and Ca(2+) signalling in hippocampal neurons. González JC, Egea J, Del Carmen Godino M, Fernandez-Gomez FJ, Sánchez-Prieto J, Gandía L, García AG, Jordán J, Hernández-Guijo JM. Eur J Neurosci; 2007 Nov 15; 26(9):2481-95. PubMed ID: 17986028 [Abstract] [Full Text] [Related]
6. Comparative effects of two polychlorinated biphenyl congeners on calcium homeostasis in rat cerebellar granule cells. Kodavanti PR, Shin DS, Tilson HA, Harry GJ. Toxicol Appl Pharmacol; 1993 Nov 15; 123(1):97-106. PubMed ID: 8236268 [Abstract] [Full Text] [Related]
7. Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro. Xiong J, Camello PJ, Verkhratsky A, Toescu EC. Neurobiol Aging; 2004 Mar 15; 25(3):349-59. PubMed ID: 15123341 [Abstract] [Full Text] [Related]
8. Re-evaluation of mitochondrial permeability transition as a primary neuroprotective target of minocycline. Månsson R, Hansson MJ, Morota S, Uchino H, Ekdahl CT, Elmér E. Neurobiol Dis; 2007 Jan 15; 25(1):198-205. PubMed ID: 17067803 [Abstract] [Full Text] [Related]
9. Ortho-substituted but not coplanar PCBs rapidly kill cerebellar granule cells. Tan Y, Song R, Lawrence D, Carpenter DO. Toxicol Sci; 2004 May 15; 79(1):147-56. PubMed ID: 15056819 [Abstract] [Full Text] [Related]
10. The effects of ruthenium red, dantrolene and nimodipine, alone or in combination, in NMDA induced neurotoxicity of cerebellar granular cell culture of rats. Düzenli S, Bakuridze K, Gepdiremen A. Toxicol In Vitro; 2005 Aug 15; 19(5):589-94. PubMed ID: 15896552 [Abstract] [Full Text] [Related]
11. Calcium oscillations induced by gambierol in cerebellar granule cells. Alonso E, Vale C, Sasaki M, Fuwa H, Konno Y, Perez S, Vieytes MR, Botana LM. J Cell Biochem; 2010 May 15; 110(2):497-508. PubMed ID: 20336695 [Abstract] [Full Text] [Related]
12. MPP(+) causes inhibition of cellular energy supply in cerebellar granule cells. González-Polo RA, Soler G, Alonso JC, Rodríguez-Martín A, Fuentes JM. Neurotoxicology; 2003 Mar 15; 24(2):219-25. PubMed ID: 12606294 [Abstract] [Full Text] [Related]
13. An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death. Baptiste DC, Hartwick AT, Jollimore CA, Baldridge WH, Seigel GM, Kelly ME. Mol Pharmacol; 2004 Nov 15; 66(5):1113-22. PubMed ID: 15304547 [Abstract] [Full Text] [Related]
14. Increased [3H]phorbol ester binding in rat cerebellar granule cells and inhibition of 45Ca2+ sequestration in rat cerebellum by polychlorinated diphenyl ether congeners and analogs: structure-activity relationships. Kodavanti PR, Ward TR, McKinney JD, Waller CL, Tilson HA. Toxicol Appl Pharmacol; 1996 Jun 15; 138(2):251-61. PubMed ID: 8658526 [Abstract] [Full Text] [Related]
15. Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Hansson MJ, Månsson R, Morota S, Uchino H, Kallur T, Sumi T, Ishii N, Shimazu M, Keep MF, Jegorov A, Elmér E. Free Radic Biol Med; 2008 Aug 01; 45(3):284-94. PubMed ID: 18466779 [Abstract] [Full Text] [Related]
17. Effects of U-83836E on glutamate-induced neurotoxicity in dissociated rat cerebellar granule cells. Sureda FX, Gabriel C, Pubill D, Pallás M, Escubedo E, Camarasa J, Camins A. Toxicol Appl Pharmacol; 1999 Apr 01; 156(1):1-5. PubMed ID: 10101093 [Abstract] [Full Text] [Related]
18. Inhibitory modulation of the mitochondrial permeability transition by minocycline. Gieseler A, Schultze AT, Kupsch K, Haroon MF, Wolf G, Siemen D, Kreutzmann P. Biochem Pharmacol; 2009 Mar 01; 77(5):888-96. PubMed ID: 19041852 [Abstract] [Full Text] [Related]
19. Redox properties of the adenoside triphosphate-sensitive K+ channel in brain mitochondria. Fornazari M, de Paula JG, Castilho RF, Kowaltowski AJ. J Neurosci Res; 2008 May 15; 86(7):1548-56. PubMed ID: 18189325 [Abstract] [Full Text] [Related]
20. Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats. Bento LM, Fagian MM, Vercesi AE, Gontijo JA. Nephrol Dial Transplant; 2007 Oct 15; 22(10):2817-23. PubMed ID: 17556421 [Abstract] [Full Text] [Related] Page: [Next] [New Search]