These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
337 related items for PubMed ID: 19683440
1. Semi-continuous biohydrogen production as an approach to generate electricity. García-Peña EI, Guerrero-Barajas C, Ramirez D, Arriaga-Hurtado LG. Bioresour Technol; 2009 Dec; 100(24):6369-77. PubMed ID: 19683440 [Abstract] [Full Text] [Related]
2. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P, Min B, Angelidaki I. Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [Abstract] [Full Text] [Related]
4. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors. Zhang Y, Angelidaki I. Water Res; 2012 May 15; 46(8):2727-36. PubMed ID: 22402271 [Abstract] [Full Text] [Related]
5. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Oh SE, Logan BE. Water Res; 2005 Nov 15; 39(19):4673-82. PubMed ID: 16289673 [Abstract] [Full Text] [Related]
6. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Koskinen PE, Lay CH, Puhakka JA, Lin PJ, Wu SY, Orlygsson J, Lin CY. Biotechnol Bioeng; 2008 Nov 01; 101(4):665-78. PubMed ID: 18814296 [Abstract] [Full Text] [Related]
8. Enhanced bio-energy recovery in a two-stage hydrogen/methane fermentation process. Lee MJ, Song JH, Hwang SJ. Water Sci Technol; 2009 Nov 01; 59(11):2137-43. PubMed ID: 19494452 [Abstract] [Full Text] [Related]
13. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. de Vrije T, Mars AE, Budde MA, Lai MH, Dijkema C, de Waard P, Claassen PA. Appl Microbiol Biotechnol; 2007 Apr 01; 74(6):1358-67. PubMed ID: 17216445 [Abstract] [Full Text] [Related]
14. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Kyazze G, Martinez-Perez N, Dinsdale R, Premier GC, Hawkes FR, Guwy AJ, Hawkes DL. Biotechnol Bioeng; 2006 Apr 05; 93(5):971-9. PubMed ID: 16353197 [Abstract] [Full Text] [Related]
15. Measurement of H2 consumption and its role in continuous fermentative hydrogen production. Kraemer JT, Bagley DM. Water Sci Technol; 2008 Apr 05; 57(5):681-5. PubMed ID: 18401138 [Abstract] [Full Text] [Related]
16. Biological hydrogen production using a membrane bioreactor. Oh SE, Iyer P, Bruns MA, Logan BE. Biotechnol Bioeng; 2004 Jul 05; 87(1):119-27. PubMed ID: 15211496 [Abstract] [Full Text] [Related]
17. Effect of reactor configuration on biogas production from wheat straw hydrolysate. Kaparaju P, Serrano M, Angelidaki I. Bioresour Technol; 2009 Dec 05; 100(24):6317-23. PubMed ID: 19647428 [Abstract] [Full Text] [Related]
18. Cultivation of low-temperature (15 degrees C), anaerobic, wastewater treatment granules. O'Reilly J, Chinalia FA, Mahony T, Collins G, Wu J, O'Flaherty V. Lett Appl Microbiol; 2009 Oct 05; 49(4):421-6. PubMed ID: 19674296 [Abstract] [Full Text] [Related]
19. [Conversion of corncob into biohydrogen by anaerobic fermentation]. Zhang S, Pan C, Fan Y, Hou H. Sheng Wu Gong Cheng Xue Bao; 2008 Jun 05; 24(6):1085-90. PubMed ID: 18807997 [Abstract] [Full Text] [Related]