These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


253 related items for PubMed ID: 19696001

  • 41. An internal model for acquisition and retention of motor learning during arm reaching.
    Lonini L, Dipietro L, Zollo L, Guglielmelli E, Krebs HI.
    Neural Comput; 2009 Jul; 21(7):2009-27. PubMed ID: 19323640
    [Abstract] [Full Text] [Related]

  • 42. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices.
    Chandra V, Nehra D, Parent R, Woo R, Reyes R, Hernandez-Boussard T, Dutta S.
    Surgery; 2010 Jun; 147(6):830-9. PubMed ID: 20045162
    [Abstract] [Full Text] [Related]

  • 43. Multisensor-based human detection and tracking for mobile service robots.
    Bellotto N, Hu H.
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):167-81. PubMed ID: 19068442
    [Abstract] [Full Text] [Related]

  • 44. On variability and use of rat primary motor cortex responses in behavioral task discrimination.
    Jensen W, Rousche PJ.
    J Neural Eng; 2006 Mar; 3(1):L7-13. PubMed ID: 16510934
    [Abstract] [Full Text] [Related]

  • 45. Recursive unsupervised learning of finite mixture models.
    Zivkovic Z, van der Heijden F.
    IEEE Trans Pattern Anal Mach Intell; 2004 May; 26(5):651-6. PubMed ID: 15460286
    [Abstract] [Full Text] [Related]

  • 46. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA, Mahmoudi B, Geng S, Prins N, Sanchez JC.
    Annu Int Conf IEEE Eng Med Biol Soc; 2012 May; 2012():4108-11. PubMed ID: 23366831
    [Abstract] [Full Text] [Related]

  • 47. Cognitively inspired reinforcement learning architecture and its application to giant-swing motion control.
    Uragami D, Takahashi T, Matsuo Y.
    Biosystems; 2014 Feb; 116():1-9. PubMed ID: 24296286
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. The Actor-Dueling-Critic Method for Reinforcement Learning.
    Wu M, Gao Y, Jung A, Zhang Q, Du S.
    Sensors (Basel); 2019 Mar 30; 19(7):. PubMed ID: 30935035
    [Abstract] [Full Text] [Related]

  • 55. Optimal critic learning for robot control in time-varying environments.
    Wang C, Li Y, Ge SS, Lee TH.
    IEEE Trans Neural Netw Learn Syst; 2015 Oct 30; 26(10):2301-10. PubMed ID: 25585427
    [Abstract] [Full Text] [Related]

  • 56. Bio-inspired adaptive feedback error learning architecture for motor control.
    Tolu S, Vanegas M, Luque NR, Garrido JA, Ros E.
    Biol Cybern; 2012 Oct 30; 106(8-9):507-22. PubMed ID: 22907270
    [Abstract] [Full Text] [Related]

  • 57. H-Man: a planar, H-shape cabled differential robotic manipulandum for experiments on human motor control.
    Campolo D, Tommasino P, Gamage K, Klein J, Hughes CM, Masia L.
    J Neurosci Methods; 2014 Sep 30; 235():285-97. PubMed ID: 25058923
    [Abstract] [Full Text] [Related]

  • 58. Assist-as-needed robotic trainer based on reinforcement learning and its application to dart-throwing.
    Obayashi C, Tamei T, Shibata T.
    Neural Netw; 2014 May 30; 53():52-60. PubMed ID: 24531040
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.