These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1026 related items for PubMed ID: 19696655
1. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells. Gao C, Pan J, Lu W, Zhang M, Zhou L, Tian J. Anticancer Drugs; 2009 Oct; 20(9):807-14. PubMed ID: 19696655 [Abstract] [Full Text] [Related]
2. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Zhang Z, Feng SS. Biomaterials; 2006 Jul; 27(21):4025-33. PubMed ID: 16564085 [Abstract] [Full Text] [Related]
3. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y, Pan J, Feng SS. Int J Pharm; 2010 Aug 16; 395(1-2):243-50. PubMed ID: 20472049 [Abstract] [Full Text] [Related]
4. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro. Jin C, Bai L, Wu H, Tian F, Guo G. Biomaterials; 2007 Sep 16; 28(25):3724-30. PubMed ID: 17509678 [Abstract] [Full Text] [Related]
5. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. Westedt U, Kalinowski M, Wittmar M, Merdan T, Unger F, Fuchs J, Schäller S, Bakowsky U, Kissel T. J Control Release; 2007 May 14; 119(1):41-51. PubMed ID: 17346845 [Abstract] [Full Text] [Related]
6. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Song N, Liu W, Tu Q, Liu R, Zhang Y, Wang J. Colloids Surf B Biointerfaces; 2011 Oct 15; 87(2):454-63. PubMed ID: 21719259 [Abstract] [Full Text] [Related]
7. The effect of paclitaxel-loaded nanoparticles with radiation on hypoxic MCF-7 cells. Jin C, Wu H, Liu J, Bai L, Guo G. J Clin Pharm Ther; 2007 Feb 15; 32(1):41-7. PubMed ID: 17286788 [Abstract] [Full Text] [Related]
8. Enhanced cellular uptake of folic acid-conjugated PLGA-PEG nanoparticles loaded with vincristine sulfate in human breast cancer. Chen J, Li S, Shen Q, He H, Zhang Y. Drug Dev Ind Pharm; 2011 Nov 15; 37(11):1339-46. PubMed ID: 21524153 [Abstract] [Full Text] [Related]
9. Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic((R))P85, an in vitro cell line and in vivo biodistribution studies on rat model. Shah N, Chaudhari K, Dantuluri P, Murthy RS, Das S. J Drug Target; 2009 Aug 15; 17(7):533-42. PubMed ID: 19530913 [Abstract] [Full Text] [Related]
10. Development of a novel biocompatible poly(ethylene glycol)-block-poly(γ-cholesterol-L-glutamate) as hydrophobic drug carrier. Ma Q, Li B, Yu Y, Zhang Y, Wu Y, Ren W, Zheng Y, He J, Xie Y, Song X, He G. Int J Pharm; 2013 Mar 10; 445(1-2):88-92. PubMed ID: 23376505 [Abstract] [Full Text] [Related]
11. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Yang A, Yang L, Liu W, Li Z, Xu H, Yang X. Int J Pharm; 2007 Feb 22; 331(1):123-32. PubMed ID: 17097246 [Abstract] [Full Text] [Related]
12. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Yang R, Shim WS, Cui FD, Cheng G, Han X, Jin QR, Kim DD, Chung SJ, Shim CK. Int J Pharm; 2009 Apr 17; 371(1-2):142-7. PubMed ID: 19118614 [Abstract] [Full Text] [Related]
13. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation. Xin H, Chen L, Gu J, Ren X, Wei Z, Luo J, Chen Y, Jiang X, Sha X, Fang X. Int J Pharm; 2010 Dec 15; 402(1-2):238-47. PubMed ID: 20934500 [Abstract] [Full Text] [Related]
14. The intracellular uptake ability of chitosan-coated Poly (D,L-lactide-co-glycolide) nanoparticles. Kim BS, Kim CS, Lee KM. Arch Pharm Res; 2008 Aug 15; 31(8):1050-4. PubMed ID: 18787796 [Abstract] [Full Text] [Related]
15. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Dong Y, Feng SS. Biomaterials; 2005 Oct 15; 26(30):6068-76. PubMed ID: 15894372 [Abstract] [Full Text] [Related]
16. Amphiphilic methoxy poly(ethylene glycol)-b-poly(ε-caprolactone)-b-poly(2-dimethylaminoethyl methacrylate) cationic copolymer nanoparticles as a vector for gene and drug delivery. Yue X, Qiao Y, Qiao N, Guo S, Xing J, Deng L, Xu J, Dong A. Biomacromolecules; 2010 Sep 13; 11(9):2306-12. PubMed ID: 20666510 [Abstract] [Full Text] [Related]
17. Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. Mo Y, Lim LY. J Control Release; 2005 Sep 20; 107(1):30-42. PubMed ID: 16051391 [Abstract] [Full Text] [Related]
18. A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Lim HJ, Nam HY, Lee BH, Kim DJ, Ko JY, Park JS. Biotechnol Prog; 2007 Sep 20; 23(3):693-7. PubMed ID: 17465527 [Abstract] [Full Text] [Related]
19. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, Préat V. J Control Release; 2009 Jan 05; 133(1):11-7. PubMed ID: 18950666 [Abstract] [Full Text] [Related]
20. Poly(ester anhydride)/mPEG amphiphilic block co-polymer nanoparticles as delivery devices for paclitaxel. Liang Y, Xiao L, Li Y, Zhai Y, Xie C, Deng L, Dong A. J Biomater Sci Polym Ed; 2011 Jan 05; 22(4-6):701-15. PubMed ID: 20566053 [Abstract] [Full Text] [Related] Page: [Next] [New Search]