These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


473 related items for PubMed ID: 19698713

  • 21. Crowding Modulates the Conformation, Affinity, and Activity of the Components of the Bacterial Disaggregase Machinery.
    Celaya G, Fernández-Higuero JA, Martin I, Rivas G, Moro F, Muga A.
    J Mol Biol; 2016 Jun 05; 428(11):2474-2487. PubMed ID: 27133933
    [Abstract] [Full Text] [Related]

  • 22. The N-terminal domain of Escherichia coli ClpB enhances chaperone function.
    Chow IT, Barnett ME, Zolkiewski M, Baneyx F.
    FEBS Lett; 2005 Aug 15; 579(20):4242-8. PubMed ID: 16051221
    [Abstract] [Full Text] [Related]

  • 23. E. coli transports aggregated proteins to the poles by a specific and energy-dependent process.
    Rokney A, Shagan M, Kessel M, Smith Y, Rosenshine I, Oppenheim AB.
    J Mol Biol; 2009 Sep 25; 392(3):589-601. PubMed ID: 19596340
    [Abstract] [Full Text] [Related]

  • 24. Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments.
    Haslberger T, Zdanowicz A, Brand I, Kirstein J, Turgay K, Mogk A, Bukau B.
    Nat Struct Mol Biol; 2008 Jun 25; 15(6):641-50. PubMed ID: 18488042
    [Abstract] [Full Text] [Related]

  • 25. Synergistic coordination of polyethylene glycol with ClpB/DnaKJE bichaperone for refolding of heat-denatured malate dehydrogenase.
    Nian R, Kim DS, Tan L, Kim CW, Choe WS.
    Biotechnol Prog; 2009 Jun 25; 25(4):1078-85. PubMed ID: 19551876
    [Abstract] [Full Text] [Related]

  • 26. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA, Kwiatkowska JM, Lipińska B.
    Arch Microbiol; 2004 Dec 25; 182(6):436-49. PubMed ID: 15448982
    [Abstract] [Full Text] [Related]

  • 27. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ.
    Biochemistry; 2003 May 06; 42(17):4926-36. PubMed ID: 12718534
    [Abstract] [Full Text] [Related]

  • 28. The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70.
    Wittung-Stafshede P, Guidry J, Horne BE, Landry SJ.
    Biochemistry; 2003 May 06; 42(17):4937-44. PubMed ID: 12718535
    [Abstract] [Full Text] [Related]

  • 29. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells.
    Zavilgelsky GB, Kotova VY, Mazhul' MM, Manukhov IV.
    Biochemistry (Mosc); 2002 Sep 06; 67(9):986-92. PubMed ID: 12387711
    [Abstract] [Full Text] [Related]

  • 30. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites.
    Schlee S, Groemping Y, Herde P, Seidel R, Reinstein J.
    J Mol Biol; 2001 Mar 02; 306(4):889-99. PubMed ID: 11243796
    [Abstract] [Full Text] [Related]

  • 31. DnaJ recruits DnaK to protein aggregates.
    Acebrón SP, Fernández-Sáiz V, Taneva SG, Moro F, Muga A.
    J Biol Chem; 2008 Jan 18; 283(3):1381-1390. PubMed ID: 17984091
    [Abstract] [Full Text] [Related]

  • 32. A chaperone network for the resolubilization of protein aggregates: direct interaction of ClpB and DnaK.
    Schlee S, Beinker P, Akhrymuk A, Reinstein J.
    J Mol Biol; 2004 Feb 06; 336(1):275-85. PubMed ID: 14741222
    [Abstract] [Full Text] [Related]

  • 33. Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate.
    Fernández-Higuero JA, Aguado A, Perales-Calvo J, Moro F, Muga A.
    Sci Rep; 2018 Apr 11; 8(1):5796. PubMed ID: 29643454
    [Abstract] [Full Text] [Related]

  • 34. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network.
    Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B.
    Proc Natl Acad Sci U S A; 1999 Nov 23; 96(24):13732-7. PubMed ID: 10570141
    [Abstract] [Full Text] [Related]

  • 35. Role of the DnaK-ClpB bichaperone system in DNA gyrase reactivation during a severe heat-shock response in Escherichia coli.
    Lara-Ortíz T, Castro-Dorantes J, Ramírez-Santos J, Gómez-Eichelmann MC.
    Can J Microbiol; 2012 Feb 23; 58(2):195-9. PubMed ID: 22263929
    [Abstract] [Full Text] [Related]

  • 36. Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria.
    Zmijewski MA, Skórko-Glonek J, Tanfani F, Banecki B, Kotlarz A, Macario AJ, Lipińska B.
    Acta Biochim Pol; 2007 Feb 23; 54(2):245-52. PubMed ID: 17565388
    [Abstract] [Full Text] [Related]

  • 37. Chaperone networks in protein disaggregation and prion propagation.
    Winkler J, Tyedmers J, Bukau B, Mogk A.
    J Struct Biol; 2012 Aug 23; 179(2):152-60. PubMed ID: 22580344
    [Abstract] [Full Text] [Related]

  • 38. Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ.
    Pierpaoli EV, Gisler SM, Christen P.
    Biochemistry; 1998 Nov 24; 37(47):16741-8. PubMed ID: 9843444
    [Abstract] [Full Text] [Related]

  • 39. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone.
    Rüdiger S, Schneider-Mergener J, Bukau B.
    EMBO J; 2001 Mar 01; 20(5):1042-50. PubMed ID: 11230128
    [Abstract] [Full Text] [Related]

  • 40. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions.
    Genevaux P, Georgopoulos C, Kelley WL.
    Mol Microbiol; 2007 Nov 01; 66(4):840-57. PubMed ID: 17919282
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.