These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 19703116

  • 1. Estimation of parameters of a biochemically based model of photosynthesis using a genetic algorithm.
    Su Y, Zhu G, Miao Z, Feng Q, Chang Z.
    Plant Cell Environ; 2009 Dec; 32(12):1710-23. PubMed ID: 19703116
    [Abstract] [Full Text] [Related]

  • 2. Comparison of the A-Cc curve fitting methods in determining maximum ribulose 1.5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration.
    Miao Z, Xu M, Lathrop RG, Wang Y.
    Plant Cell Environ; 2009 Feb; 32(2):109-22. PubMed ID: 19154228
    [Abstract] [Full Text] [Related]

  • 3. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy.
    Yin X, Struik PC, Romero P, Harbinson J, Evers JB, VAN DER Putten PE, Vos J.
    Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300
    [Abstract] [Full Text] [Related]

  • 4. Fitting photosynthetic carbon dioxide response curves for C(3) leaves.
    Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL.
    Plant Cell Environ; 2007 Sep; 30(9):1035-40. PubMed ID: 17661745
    [Abstract] [Full Text] [Related]

  • 5. A hierarchical Bayesian approach for estimation of photosynthetic parameters of C(3) plants.
    Patrick LD, Ogle K, Tissue DT.
    Plant Cell Environ; 2009 Dec; 32(12):1695-709. PubMed ID: 19671098
    [Abstract] [Full Text] [Related]

  • 6. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field.
    Niinemets U, Díaz-Espejo A, Flexas J, Galmés J, Warren CR.
    J Exp Bot; 2009 Dec; 60(8):2271-82. PubMed ID: 19305021
    [Abstract] [Full Text] [Related]

  • 7. A/C(i) curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance.
    Manter DK, Kerrigan J.
    J Exp Bot; 2004 Dec; 55(408):2581-8. PubMed ID: 15501912
    [Abstract] [Full Text] [Related]

  • 8. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters?
    Rodeghiero M, Niinemets U, Cescatti A.
    Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828
    [Abstract] [Full Text] [Related]

  • 9. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches.
    Warren CR, Dreyer E.
    J Exp Bot; 2006 Aug; 57(12):3057-67. PubMed ID: 16882645
    [Abstract] [Full Text] [Related]

  • 10. The effect of temperature on C(4)-type leaf photosynthesis parameters.
    Massad RS, Tuzet A, Bethenod O.
    Plant Cell Environ; 2007 Sep; 30(9):1191-204. PubMed ID: 17661755
    [Abstract] [Full Text] [Related]

  • 11. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ.
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [Abstract] [Full Text] [Related]

  • 12. Thermal acclimation of photosynthesis in black spruce [Picea mariana (Mill.) B.S.P.].
    Way DA, Sage RF.
    Plant Cell Environ; 2008 Sep; 31(9):1250-62. PubMed ID: 18532986
    [Abstract] [Full Text] [Related]

  • 13. Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum.
    Onoda Y, Hikosaka K, Hirose T.
    J Exp Bot; 2005 Feb; 56(412):755-63. PubMed ID: 15596479
    [Abstract] [Full Text] [Related]

  • 14. Growth in elevated CO2 enhances temperature response of photosynthesis in wheat.
    Alonso A, Pérez P, Martínez-Carrasco R.
    Physiol Plant; 2009 Feb; 135(2):109-20. PubMed ID: 19055543
    [Abstract] [Full Text] [Related]

  • 15. Development of leaf photosynthetic parameters in Betula pendula Roth leaves: correlations with photosystem I density.
    Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Niinemets U, Laisk A.
    Plant Biol (Stuttg); 2004 May; 6(3):307-18. PubMed ID: 15143439
    [Abstract] [Full Text] [Related]

  • 16. Spatial variation in photosynthetic CO(2) carbon and oxygen isotope discrimination along leaves of the monocot triticale (Triticum × Secale) relates to mesophyll conductance and the Péclet effect.
    Kodama N, Cousins A, Tu KP, Barbour MM.
    Plant Cell Environ; 2011 Sep; 34(9):1548-62. PubMed ID: 21707646
    [Abstract] [Full Text] [Related]

  • 17. Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration.
    Li Y, Gao Y, Xu X, Shen Q, Guo S.
    J Exp Bot; 2009 Sep; 60(8):2351-60. PubMed ID: 19395387
    [Abstract] [Full Text] [Related]

  • 18. The effect of leaf-level spatial variability in photosynthetic capacity on biochemical parameter estimates using the Farquhar model: a theoretical analysis.
    Chen CP, Zhu XG, Long SP.
    Plant Physiol; 2008 Oct; 148(2):1139-47. PubMed ID: 18715955
    [Abstract] [Full Text] [Related]

  • 19. Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis.
    Dubois JB, Fiscus EL, Booker FL, Flowers MD, Reid CD.
    New Phytol; 2007 Oct; 176(2):402-414. PubMed ID: 17888119
    [Abstract] [Full Text] [Related]

  • 20. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. IV: role of conductance and laws of its regulation in C3 plants.
    André MJ.
    Biosystems; 2013 Aug; 113(2):115-26. PubMed ID: 23318161
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.