These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 19708048

  • 21. Joining the two domains of a group I ribozyme to form the catalytic core.
    Tanner MA, Cech TR.
    Science; 1997 Feb 07; 275(5301):847-9. PubMed ID: 9012355
    [Abstract] [Full Text] [Related]

  • 22. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO, Herschlag D.
    Biochemistry; 1999 Aug 24; 38(34):10958-75. PubMed ID: 10460151
    [Abstract] [Full Text] [Related]

  • 23. A positive entropy change for guanosine binding and for the chemical step in the Tetrahymena ribozyme reaction.
    McConnell TS, Cech TR.
    Biochemistry; 1995 Mar 28; 34(12):4056-67. PubMed ID: 7696271
    [Abstract] [Full Text] [Related]

  • 24. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA, Cech TR.
    Biochemistry; 1996 Jan 30; 35(4):1201-11. PubMed ID: 8573575
    [Abstract] [Full Text] [Related]

  • 25. Structure-function relationships of two closely related group IC3 intron ribozymes from Azoarcus and Synechococcus pre-tRNA.
    Ikawa Y, Naito D, Shiraishi H, Inoue T.
    Nucleic Acids Res; 2000 Sep 01; 28(17):3269-77. PubMed ID: 10954594
    [Abstract] [Full Text] [Related]

  • 26. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
    Legault P, Herschlag D, Celander DW, Cech TR.
    Nucleic Acids Res; 1992 Dec 25; 20(24):6613-9. PubMed ID: 1480482
    [Abstract] [Full Text] [Related]

  • 27. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme.
    Strobel SA, Cech TR.
    Biochemistry; 1993 Dec 14; 32(49):13593-604. PubMed ID: 7504953
    [Abstract] [Full Text] [Related]

  • 28. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R, Herschlag D.
    Biochemistry; 1996 May 07; 35(18):5796-809. PubMed ID: 8639540
    [Abstract] [Full Text] [Related]

  • 29. Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection.
    Oe Y, Ikawa Y, Shiraishi H, Inoue T.
    Nucleic Acids Symp Ser; 2000 May 07; (44):197-8. PubMed ID: 12903336
    [Abstract] [Full Text] [Related]

  • 30. Long-range interaction between the P2.1 and P9.1 peripheral domains of the Tetrahymena ribozyme.
    Ikawa Y, Ohta H, Shiraishi H, Inoue T.
    Nucleic Acids Res; 1997 May 01; 25(9):1761-5. PubMed ID: 9108158
    [Abstract] [Full Text] [Related]

  • 31. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage.
    Scott WG, Finch JT, Klug A.
    Cell; 1995 Jun 30; 81(7):991-1002. PubMed ID: 7541315
    [Abstract] [Full Text] [Related]

  • 32. Crystal structure of a group I ribozyme domain: principles of RNA packing.
    Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA.
    Science; 1996 Sep 20; 273(5282):1678-85. PubMed ID: 8781224
    [Abstract] [Full Text] [Related]

  • 33. Protonated 2'-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme.
    Shan SO, Narlikar GJ, Herschlag D.
    Biochemistry; 1999 Aug 24; 38(34):10976-88. PubMed ID: 10460152
    [Abstract] [Full Text] [Related]

  • 34. Translocation of an RNA duplex on a ribozyme.
    Strobel SA, Cech TR.
    Nat Struct Biol; 1994 Jan 24; 1(1):13-7. PubMed ID: 7544680
    [Abstract] [Full Text] [Related]

  • 35. Aminoacyl esterase activity of the Tetrahymena ribozyme.
    Piccirilli JA, McConnell TS, Zaug AJ, Noller HF, Cech TR.
    Science; 1992 Jun 05; 256(5062):1420-4. PubMed ID: 1604316
    [Abstract] [Full Text] [Related]

  • 36. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ, Dávila-Aponte JA, Cech TR.
    Biochemistry; 1994 Dec 13; 33(49):14935-47. PubMed ID: 7527660
    [Abstract] [Full Text] [Related]

  • 37. Extraordinarily slow binding of guanosine to the Tetrahymena group I ribozyme: implications for RNA preorganization and function.
    Karbstein K, Herschlag D.
    Proc Natl Acad Sci U S A; 2003 Mar 04; 100(5):2300-5. PubMed ID: 12591943
    [Abstract] [Full Text] [Related]

  • 38. Characterization of P8 and J8/7 elements in the conserved core of the tetrahymena group I intron ribozyme.
    Ikawa Y, Shiraishi H, Inoue T.
    Biochem Biophys Res Commun; 2000 Jan 07; 267(1):85-90. PubMed ID: 10623579
    [Abstract] [Full Text] [Related]

  • 39. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA, Doherty EA, Knitt DS, Doudna JA, Herschlag D.
    Biochemistry; 2000 Mar 14; 39(10):2639-51. PubMed ID: 10704214
    [Abstract] [Full Text] [Related]

  • 40. Binding of guanosine and 3' splice site analogues to a group I ribozyme: interactions with functional groups of guanosine and with additional nucleotides.
    Moran S, Kierzek R, Turner DH.
    Biochemistry; 1993 May 18; 32(19):5247-56. PubMed ID: 8494902
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.