These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


72 related items for PubMed ID: 19709221

  • 1. Ethylene biosynthesis in Botrytis cinerea.
    Chagué V, Elad Y, Barakat R, Tudzynski P, Sharon A.
    FEMS Microbiol Ecol; 2002 May 01; 40(2):143-9. PubMed ID: 19709221
    [Abstract] [Full Text] [Related]

  • 2. Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli.
    Primrose SB.
    J Gen Microbiol; 1977 Feb 01; 98(2):519-28. PubMed ID: 16080
    [Abstract] [Full Text] [Related]

  • 3. Ethylene production by Botrytis cinerea in vitro and in tomatoes.
    Cristescu SM, De Martinis D, Te Lintel Hekkert S, Parker DH, Harren FJ.
    Appl Environ Microbiol; 2002 Nov 01; 68(11):5342-50. PubMed ID: 12406723
    [Abstract] [Full Text] [Related]

  • 4. The physiology of L-methionine catabolism to the secondary metabolite ethylene by Escherichia coli.
    Shipston N, Bunch AW.
    J Gen Microbiol; 1989 Jun 01; 135(6):1489-97. PubMed ID: 2693600
    [Abstract] [Full Text] [Related]

  • 5. Kinetics and effects of trace elements and electron complexes on 2-keto-4-methylthiobutyric acid-dependent biosynthesis of ethylene in soil.
    Arshad M, Nazli ZH, Khalid A, Zahir ZA.
    Lett Appl Microbiol; 2004 Jun 01; 39(3):306-9. PubMed ID: 15287880
    [Abstract] [Full Text] [Related]

  • 6. Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine.
    Mansouri S, Bunch AW.
    J Gen Microbiol; 1989 Nov 01; 135(11):2819-27. PubMed ID: 2559143
    [Abstract] [Full Text] [Related]

  • 7. The biosynthetic pathway to abscisic acid via ionylideneethane in the fungus Botrytis cinerea.
    Inomata M, Hirai N, Yoshida R, Ohigashi H.
    Phytochemistry; 2004 Oct 01; 65(19):2667-78. PubMed ID: 15464154
    [Abstract] [Full Text] [Related]

  • 8. Interaction with and effects on the profile of proteins of Botrytis cinerea by C6 aldehydes.
    Myung K, Hamilton-Kemp TR, Archbold DD.
    J Agric Food Chem; 2007 Mar 21; 55(6):2182-8. PubMed ID: 17323971
    [Abstract] [Full Text] [Related]

  • 9. Does botrytis cinerea Ignore H(2)O(2)-induced oxidative stress during infection? Characterization of botrytis activator protein 1.
    Temme N, Tudzynski P.
    Mol Plant Microbe Interact; 2009 Aug 21; 22(8):987-98. PubMed ID: 19589074
    [Abstract] [Full Text] [Related]

  • 10. Phenotypical differences among B. cinerea isolates from ornamental plants.
    Martínez JA, Valdés R, Vicente MJ, Bañón S.
    Commun Agric Appl Biol Sci; 2008 Aug 21; 73(2):121-9. PubMed ID: 19226749
    [Abstract] [Full Text] [Related]

  • 11. In vitro sensitivity of Botrytis cinerea to anthraquinone and anthrahydroquinone derivatives.
    Mendoza L, Araya-Maturana R, Cardona W, Delgado-Castro T, García C, Lagos C, Cotoras M.
    J Agric Food Chem; 2005 Dec 28; 53(26):10080-4. PubMed ID: 16366698
    [Abstract] [Full Text] [Related]

  • 12. Ethylene formation by cell-free extracts of Escherichia coli.
    Ince JE, Knowles CJ.
    Arch Microbiol; 1986 Nov 28; 146(2):151-8. PubMed ID: 3541827
    [Abstract] [Full Text] [Related]

  • 13. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens.
    Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F.
    Mol Plant Microbe Interact; 2009 Oct 28; 22(10):1227-38. PubMed ID: 19737096
    [Abstract] [Full Text] [Related]

  • 14. Light-induced synchronous conidiation in the fungus Botrytis cinerea.
    Tan KK.
    J Gen Microbiol; 1976 Apr 28; 93(2):278-82. PubMed ID: 945324
    [Abstract] [Full Text] [Related]

  • 15. [Effect of substrate-dependent microbialy produced ethylene on plant growth].
    Khalid A, Akhtar MH, Makhmood MH, Arshad M.
    Mikrobiologiia; 2006 Apr 28; 75(2):277-83. PubMed ID: 16758878
    [Abstract] [Full Text] [Related]

  • 16. Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues.
    Fernández-Baldo MA, Messina GA, Sanz MI, Raba J.
    Talanta; 2009 Aug 15; 79(3):681-6. PubMed ID: 19576430
    [Abstract] [Full Text] [Related]

  • 17. Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens.
    Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M.
    Lett Appl Microbiol; 2009 Jun 15; 48(6):705-11. PubMed ID: 19413806
    [Abstract] [Full Text] [Related]

  • 18. Characterisation of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberry.
    Ishii H, Fountaine J, Chung WH, Kansako M, Nishimura K, Takahashi K, Oshima M.
    Pest Manag Sci; 2009 Aug 15; 65(8):916-22. PubMed ID: 19444805
    [Abstract] [Full Text] [Related]

  • 19. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine.
    Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S.
    Plant Cell Environ; 2009 Feb 15; 32(2):178-193. PubMed ID: 19021887
    [Abstract] [Full Text] [Related]

  • 20. Inhibition of ethylene production by rhizobitoxine.
    Owens LD, Lieberman M, Kunishi A.
    Plant Physiol; 1971 Jul 15; 48(1):1-4. PubMed ID: 16657720
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.