These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


245 related items for PubMed ID: 19709960

  • 1. Toward energy efficient neural interfaces.
    Peng CC, Xiao Z, Bashirullah R.
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2697-700. PubMed ID: 19709960
    [Abstract] [Full Text] [Related]

  • 2. A single-chip signal processing and telemetry engine for an implantable 96-channel neural data acquisition system.
    Rizk M, Obeid I, Callender SH, Wolf PD.
    J Neural Eng; 2007 Sep; 4(3):309-21. PubMed ID: 17873433
    [Abstract] [Full Text] [Related]

  • 3. A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter.
    Chae MS, Yang Z, Yuce MR, Hoang L, Liu W.
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):312-21. PubMed ID: 19435684
    [Abstract] [Full Text] [Related]

  • 4. Micropower circuits for bidirectional wireless telemetry in neural recording applications.
    Neihart NM, Harrison RR.
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399
    [Abstract] [Full Text] [Related]

  • 5. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems.
    Zumsteg ZS, Kemere C, O'Driscoll S, Santhanam G, Ahmed RE, Shenoy KV, Meng TH.
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):272-9. PubMed ID: 16200751
    [Abstract] [Full Text] [Related]

  • 6. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording.
    Sodagar AM, Wise KD, Najafi K.
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1075-88. PubMed ID: 17554826
    [Abstract] [Full Text] [Related]

  • 7. A miniaturized neuroprosthesis suitable for implantation into the brain.
    Mojarradi M, Binkley D, Blalock B, Andersen R, Ulshoefer N, Johnson T, Del Castillo L.
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):38-42. PubMed ID: 12797724
    [Abstract] [Full Text] [Related]

  • 8. Low-power transceiver analog front-end circuits for bidirectional high data rate wireless telemetry in medical endoscopy applications.
    Chi B, Yao J, Han S, Xie X, Li G, Wang Z.
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1291-9. PubMed ID: 17605360
    [Abstract] [Full Text] [Related]

  • 9. A TinyOS-enabled MICA2-based wireless neural interface.
    Farshchi S, Nuyujukian PH, Pesterev A, Mody I, Judy JW.
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1416-24. PubMed ID: 16830946
    [Abstract] [Full Text] [Related]

  • 10. Active microelectronic neurosensor arrays for implantable brain communication interfaces.
    Song YK, Borton DA, Park S, Patterson WR, Bull CW, Laiwalla F, Mislow J, Simeral JD, Donoghue JP, Nurmikko AV.
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):339-45. PubMed ID: 19502132
    [Abstract] [Full Text] [Related]

  • 11. An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection.
    Perelman Y, Ginosar R.
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):130-7. PubMed ID: 17260864
    [Abstract] [Full Text] [Related]

  • 12. An optical microsystem for wireless neural recording.
    Wei P, Ziaie B.
    Annu Int Conf IEEE Eng Med Biol Soc; 2009 Jan; 2009():5522-4. PubMed ID: 19964126
    [Abstract] [Full Text] [Related]

  • 13. A multi-channel low-power system-on-chip for single-unit recording and narrowband wireless transmission of neural signal.
    Bonfanti A, Ceravolo M, Zambra G, Gusmeroli R, Spinelli AS, Lacaita AL, Angotzi GN, Baranauskas G, Fadiga L.
    Annu Int Conf IEEE Eng Med Biol Soc; 2010 Jan; 2010():1555-60. PubMed ID: 21096380
    [Abstract] [Full Text] [Related]

  • 14. HermesC: low-power wireless neural recording system for freely moving primates.
    Chestek CA, Gilja V, Nuyujukian P, Kier RJ, Solzbacher F, Ryu SI, Harrison RR, Shenoy KV.
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):330-8. PubMed ID: 19497829
    [Abstract] [Full Text] [Related]

  • 15. A system-level view of optimizing high-channel-count wireless biosignal telemetry.
    Chandler RJ, Gibson S, Karkare V, Farshchi S, Marković D, Judy JW.
    Annu Int Conf IEEE Eng Med Biol Soc; 2009 Aug; 2009():5525-30. PubMed ID: 19964127
    [Abstract] [Full Text] [Related]

  • 16. HermesB: a continuous neural recording system for freely behaving primates.
    Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng TH, Shenoy KV.
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2037-50. PubMed ID: 18018699
    [Abstract] [Full Text] [Related]

  • 17. Wireless technologies for closed-loop retinal prostheses.
    Ng DC, Bai S, Yang J, Tran N, Skafidas E.
    J Neural Eng; 2009 Dec; 6(6):065004. PubMed ID: 19850974
    [Abstract] [Full Text] [Related]

  • 18. Integrated wireless neural interface based on the Utah electrode array.
    Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F.
    Biomed Microdevices; 2009 Apr; 11(2):453-66. PubMed ID: 19067174
    [Abstract] [Full Text] [Related]

  • 19. Development of a wireless system for auditory neuroscience.
    Lukes AJ, Lear AT, Snider RK.
    Biomed Sci Instrum; 2001 Apr; 37():119-24. PubMed ID: 11347373
    [Abstract] [Full Text] [Related]

  • 20. [Development of a digital EEG signal acquiring system based on virtual instrument technology].
    Ying J, Chen GF, He SL.
    Zhongguo Yi Liao Qi Xie Za Zhi; 2009 Sep; 33(5):332-5. PubMed ID: 20073237
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.