These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


616 related items for PubMed ID: 19717922

  • 21. Chemical reactions between arsenic and zero-valent iron in water.
    Bang S, Johnson MD, Korfiatis GP, Meng X.
    Water Res; 2005 Mar; 39(5):763-70. PubMed ID: 15743620
    [Abstract] [Full Text] [Related]

  • 22. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC, Xu H, Sahai N.
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [Abstract] [Full Text] [Related]

  • 23. Behavior of aluminum electrodes in electrocoagulation process.
    Mouedhen G, Feki M, Wery Mde P, Ayedi HF.
    J Hazard Mater; 2008 Jan 15; 150(1):124-35. PubMed ID: 17537574
    [Abstract] [Full Text] [Related]

  • 24. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon.
    Mondal P, Majumder CB, Mohanty B.
    J Hazard Mater; 2008 Feb 11; 150(3):695-702. PubMed ID: 17574333
    [Abstract] [Full Text] [Related]

  • 25. Removal of As(V) and As(III) by reclaimed iron-oxide coated sands.
    Hsu JC, Lin CJ, Liao CH, Chen ST.
    J Hazard Mater; 2008 May 01; 153(1-2):817-26. PubMed ID: 17988793
    [Abstract] [Full Text] [Related]

  • 26. The removal of lignin and phenol from paper mill effluents by electrocoagulation.
    Uğurlu M, Gürses A, Doğar C, Yalçin M.
    J Environ Manage; 2008 May 01; 87(3):420-8. PubMed ID: 17360102
    [Abstract] [Full Text] [Related]

  • 27. Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride.
    Chen LH, Huang CC, Lien HL.
    Chemosphere; 2008 Oct 01; 73(5):692-7. PubMed ID: 18701127
    [Abstract] [Full Text] [Related]

  • 28. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic.
    Makris KC, Sarkar D, Datta R.
    Chemosphere; 2006 Jul 01; 64(5):730-41. PubMed ID: 16405955
    [Abstract] [Full Text] [Related]

  • 29. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation.
    Modirshahla N, Behnajady MA, Mohammadi-Aghdam S.
    J Hazard Mater; 2008 Jun 15; 154(1-3):778-86. PubMed ID: 18162293
    [Abstract] [Full Text] [Related]

  • 30. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention.
    Jia Y, Demopoulos GP.
    Water Res; 2008 Feb 15; 42(3):661-8. PubMed ID: 17825873
    [Abstract] [Full Text] [Related]

  • 31. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water.
    Hlavay J, Polyák K.
    J Colloid Interface Sci; 2005 Apr 01; 284(1):71-7. PubMed ID: 15752786
    [Abstract] [Full Text] [Related]

  • 32. Metallic iron for environmental remediation: learning from electrocoagulation.
    Noubactep C, Schöner A.
    J Hazard Mater; 2010 Mar 15; 175(1-3):1075-80. PubMed ID: 19864056
    [Abstract] [Full Text] [Related]

  • 33. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections.
    Kobya M, Bayramoglu M, Eyvaz M.
    J Hazard Mater; 2007 Sep 05; 148(1-2):311-8. PubMed ID: 17368931
    [Abstract] [Full Text] [Related]

  • 34. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption.
    Chou WL, Wang CT, Huang KY.
    J Hazard Mater; 2009 Aug 15; 167(1-3):467-74. PubMed ID: 19203835
    [Abstract] [Full Text] [Related]

  • 35. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor.
    Arroyo MG, Pérez-Herranz V, Montañés MT, García-Antón J, Guiñón JL.
    J Hazard Mater; 2009 Sep 30; 169(1-3):1127-33. PubMed ID: 19464794
    [Abstract] [Full Text] [Related]

  • 36. Polyaluminum chloride with high Al30 content as removal agent for arsenic-contaminated well water.
    Mertens J, Casentini B, Masion A, Pöthig R, Wehrli B, Furrer G.
    Water Res; 2012 Jan 01; 46(1):53-62. PubMed ID: 22078251
    [Abstract] [Full Text] [Related]

  • 37. Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4-Fe(II) process.
    Guan X, Dong H, Ma J, Jiang L.
    Water Res; 2009 Aug 01; 43(15):3891-9. PubMed ID: 19573891
    [Abstract] [Full Text] [Related]

  • 38. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.
    Makris KC, Sarkar D, Parsons JG, Datta R, Gardea-Torresdey JL.
    J Hazard Mater; 2009 Nov 15; 171(1-3):980-6. PubMed ID: 19631458
    [Abstract] [Full Text] [Related]

  • 39. Fe-Al layered double hydroxides in bromate reduction: Synthesis and reactivity.
    Chitrakar R, Makita Y, Sonoda A, Hirotsu T.
    J Colloid Interface Sci; 2011 Feb 15; 354(2):798-803. PubMed ID: 21126742
    [Abstract] [Full Text] [Related]

  • 40. Modeling and electrokinetic evidences on the processes of the Al(III) sorption continuum in SiO2(s) suspension.
    Kuan WH, Lo SL, Wang MK.
    J Colloid Interface Sci; 2004 Apr 15; 272(2):489-97. PubMed ID: 15028515
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 31.