These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


428 related items for PubMed ID: 19719141

  • 1. Pursuing aldose reductase inhibitors through in situ cross-docking and similarity-based virtual screening.
    Cosconati S, Marinelli L, La Motta C, Sartini S, Da Settimo F, Olson AJ, Novellino E.
    J Med Chem; 2009 Sep 24; 52(18):5578-81. PubMed ID: 19719141
    [Abstract] [Full Text] [Related]

  • 2. Progresses in the pursuit of aldose reductase inhibitors: the structure-based lead optimization step.
    Ramunno A, Cosconati S, Sartini S, Maglio V, Angiuoli S, La Pietra V, Di Maro S, Giustiniano M, La Motta C, Da Settimo F, Marinelli L, Novellino E.
    Eur J Med Chem; 2012 May 24; 51():216-26. PubMed ID: 22436396
    [Abstract] [Full Text] [Related]

  • 3. Structure-based virtual screening approach to identify novel classes of PTP1B inhibitors.
    Park H, Bhattarai BR, Ham SW, Cho H.
    Eur J Med Chem; 2009 Aug 24; 44(8):3280-4. PubMed ID: 19269068
    [Abstract] [Full Text] [Related]

  • 4. Discovery of new selective human aldose reductase inhibitors through virtual screening multiple binding pocket conformations.
    Wang L, Gu Q, Zheng X, Ye J, Liu Z, Li J, Hu X, Hagler A, Xu J.
    J Chem Inf Model; 2013 Sep 23; 53(9):2409-22. PubMed ID: 23901876
    [Abstract] [Full Text] [Related]

  • 5. Structure-based optimization of aldose reductase inhibitors originating from virtual screening.
    Eisenmann M, Steuber H, Zentgraf M, Altenkämper M, Ortmann R, Perruchon J, Klebe G, Schlitzer M.
    ChemMedChem; 2009 May 23; 4(5):809-19. PubMed ID: 19301313
    [Abstract] [Full Text] [Related]

  • 6. Evaluation of aldose reductase inhibition and docking studies of 6'-nitro and 6',6''-dinitrorosmarinic acids.
    Koukoulitsa C, Bailly F, Pegklidou K, Demopoulos VJ, Cotelle P.
    Eur J Med Chem; 2010 Apr 23; 45(4):1663-6. PubMed ID: 20071057
    [Abstract] [Full Text] [Related]

  • 7. A neural networks-based drug discovery approach and its application for designing aldose reductase inhibitors.
    Hu L, Chen G, Chau RM.
    J Mol Graph Model; 2006 Jan 23; 24(4):244-53. PubMed ID: 16226911
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Evaluation of in vitro aldose redutase inhibitory activity of 5-arylidene-2,4-thiazolidinediones.
    Maccari R, Ottanà R, Ciurleo R, Vigorita MG, Rakowitz D, Steindl T, Langer T.
    Bioorg Med Chem Lett; 2007 Jul 15; 17(14):3886-93. PubMed ID: 17512196
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Selectivity determinants of inhibitor binding to the tumour marker human aldose reductase-like protein (AKR1B10) discovered from molecular docking and database screening.
    Zhao HT, Soda M, Endo S, Hara A, El-Kabbani O.
    Eur J Med Chem; 2010 Sep 15; 45(9):4354-7. PubMed ID: 20538382
    [Abstract] [Full Text] [Related]

  • 13. Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus.
    Patra JC, Singh O.
    J Comput Chem; 2009 Nov 30; 30(15):2494-508. PubMed ID: 19373836
    [Abstract] [Full Text] [Related]

  • 14. Evaluation of aldose reductase inhibition and docking studies of some secondary metabolites, isolated from Origanum vulgare L. ssp. hirtum.
    Koukoulitsa C, Zika C, Geromichalos GD, Demopoulos VJ, Skaltsa H.
    Bioorg Med Chem; 2006 Mar 01; 14(5):1653-9. PubMed ID: 16249088
    [Abstract] [Full Text] [Related]

  • 15. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution.
    Steuber H, Heine A, Klebe G.
    J Mol Biol; 2007 May 04; 368(3):618-38. PubMed ID: 17368668
    [Abstract] [Full Text] [Related]

  • 16. 1,2-Benzothiazine 1,1-dioxide carboxylate derivatives as novel potent inhibitors of aldose reductase.
    Chen X, Zhang S, Yang Y, Hussain S, He M, Gui D, Ma B, Jing C, Qiao Z, Zhu C, Yu Q.
    Bioorg Med Chem; 2011 Dec 01; 19(23):7262-9. PubMed ID: 22036211
    [Abstract] [Full Text] [Related]

  • 17. Addressing protein flexibility and ligand selectivity by "in situ cross-docking".
    Zentgraf M, Fokkens J, Sotriffer CA.
    ChemMedChem; 2006 Dec 01; 1(12):1355-9. PubMed ID: 17024701
    [No Abstract] [Full Text] [Related]

  • 18. Protein structure-based de novo design and synthesis of aldose reductase inhibitors.
    Iwata Y, Naito S, Itai A, Miyamoto S.
    Drug Des Discov; 2001 Dec 01; 17(4):349-59. PubMed ID: 11765138
    [Abstract] [Full Text] [Related]

  • 19. Kinetics and molecular docking studies of kaempferol and its prenylated derivatives as aldose reductase inhibitors.
    Jung HA, Moon HE, Oh SH, Kim BW, Sohn HS, Choi JS.
    Chem Biol Interact; 2012 May 30; 197(2-3):110-8. PubMed ID: 22543015
    [Abstract] [Full Text] [Related]

  • 20. Structure-activity relationships and molecular modelling of 5-arylidene-2,4-thiazolidinediones active as aldose reductase inhibitors.
    Maccari R, Ottanà R, Curinga C, Vigorita MG, Rakowitz D, Steindl T, Langer T.
    Bioorg Med Chem; 2005 Apr 15; 13(8):2809-23. PubMed ID: 15781392
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.