These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


287 related items for PubMed ID: 19719219

  • 1. Aggregation behavior of tetracarboxylic surfactants derived from cholic and deoxycholic acids and ethylenediaminetetraacetic acid.
    Alvarez Alcalde M, Jover A, Meijide F, Galantini L, Viorel Pavel N, Antelo A, Vázquez Tato J.
    Langmuir; 2009 Aug 18; 25(16):9037-44. PubMed ID: 19719219
    [Abstract] [Full Text] [Related]

  • 2. Micellization of bile salts in aqueous medium: a fluorescence study.
    Subuddhi U, Mishra AK.
    Colloids Surf B Biointerfaces; 2007 May 15; 57(1):102-7. PubMed ID: 17336505
    [Abstract] [Full Text] [Related]

  • 3. Synthesis and characterization of a new gemini surfactant derived from 3alpha,12alpha-dihydroxy-5beta-cholan-24-amine (steroid residue) and ethylenediamintetraacetic acid (spacer).
    Alvarez Alcalde M, Jover A, Meijide F, Galantini L, Pavel NV, Antelo A, Vázquez Tato J.
    Langmuir; 2008 Jun 17; 24(12):6060-6. PubMed ID: 18498184
    [Abstract] [Full Text] [Related]

  • 4. Phase behavior and rheological properties of salt-free catanionic surfactant mixtures in the presence of bile acids.
    Liu C, Hao J, Wu Z.
    J Phys Chem B; 2010 Aug 05; 114(30):9795-804. PubMed ID: 20617849
    [Abstract] [Full Text] [Related]

  • 5. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC, Goldsipe A, Beers KJ, Blankschtein D.
    J Phys Chem B; 2007 Feb 08; 111(5):1045-62. PubMed ID: 17266258
    [Abstract] [Full Text] [Related]

  • 6. Critical micellar concentrations of keto derivatives of selected bile acids: thermodynamic functions of micelle formation.
    Posa M, Kevresan S, Mikov M, Cirin-Novta V, Kuhajda K.
    Colloids Surf B Biointerfaces; 2008 Jul 15; 64(2):151-61. PubMed ID: 18328679
    [Abstract] [Full Text] [Related]

  • 7. Solubilization of negatively charged DPPC/DPPG liposomes by bile salts.
    Hildebrand A, Beyer K, Neubert R, Garidel P, Blume A.
    J Colloid Interface Sci; 2004 Nov 15; 279(2):559-71. PubMed ID: 15464825
    [Abstract] [Full Text] [Related]

  • 8. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (part 1).
    Matsuoka K, Moroi Y.
    Biochim Biophys Acta; 2002 Feb 28; 1580(2-3):189-99. PubMed ID: 11880243
    [Abstract] [Full Text] [Related]

  • 9. Importance of head group polarity in controlling aggregation properties of cationic gemini surfactants.
    Borse MS, Devi S.
    Adv Colloid Interface Sci; 2006 Nov 16; 123-126():387-99. PubMed ID: 16806032
    [Abstract] [Full Text] [Related]

  • 10. Micelle formation of sodium chenodeoxycholate and solubilization into the micelles: comparison with other unconjugated bile salts.
    Ninomiya R, Matsuoka K, Moroi Y.
    Biochim Biophys Acta; 2003 Nov 15; 1634(3):116-25. PubMed ID: 14643799
    [Abstract] [Full Text] [Related]

  • 11. Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides.
    El Seoud OA, Pires PA, Abdel-Moghny T, Bastos EL.
    J Colloid Interface Sci; 2007 Sep 01; 313(1):296-304. PubMed ID: 17509607
    [Abstract] [Full Text] [Related]

  • 12. The effect of sodium cholate aggregates on thermoreversible gelation of PNIPAM.
    Kumar AC, Bohidar HB, Mishra AK.
    Colloids Surf B Biointerfaces; 2009 Apr 01; 70(1):60-7. PubMed ID: 19153035
    [Abstract] [Full Text] [Related]

  • 13. Effect of sodium salicylate, sodium oxalate, and sodium chloride on the micellization and adsorption of sodium deoxycholate in aqueous solutions.
    Das S, Dey J, Mukhim T, Ismail K.
    J Colloid Interface Sci; 2011 May 15; 357(2):434-9. PubMed ID: 21402381
    [Abstract] [Full Text] [Related]

  • 14. Aggregate properties of sodium deoxycholate and dimyristoylphosphatidylcholine mixed micelles.
    Singh J, Unlu Z, Ranganathan R, Griffiths P.
    J Phys Chem B; 2008 Apr 03; 112(13):3997-4008. PubMed ID: 18335917
    [Abstract] [Full Text] [Related]

  • 15. Noninvasive methods to determine the critical micelle concentration of some bile acid salts.
    Reis S, Moutinho CG, Matos C, de Castro B, Gameiro P, Lima JL.
    Anal Biochem; 2004 Nov 01; 334(1):117-26. PubMed ID: 15464960
    [Abstract] [Full Text] [Related]

  • 16. A new pyrene-based fluorescent probe for the determination of critical micelle concentrations.
    Mohr A, Talbiersky P, Korth HG, Sustmann R, Boese R, Bläser D, Rehage H.
    J Phys Chem B; 2007 Nov 15; 111(45):12985-92. PubMed ID: 17958349
    [Abstract] [Full Text] [Related]

  • 17. Quantifying the hydrophobic effect. 3. A computer simulation-molecular-thermodynamic model for the micellization of ionic and zwitterionic surfactants in aqueous solution.
    Stephenson BC, Beers KJ, Blankschtein D.
    J Phys Chem B; 2007 Feb 08; 111(5):1063-75. PubMed ID: 17266259
    [Abstract] [Full Text] [Related]

  • 18. Micelle formation of sodium hyodeoxycholate.
    Matsuoka K, Takagi K, Honda C.
    Chem Phys Lipids; 2013 Feb 08; 172-173():6-13. PubMed ID: 23665117
    [Abstract] [Full Text] [Related]

  • 19. Self-aggregation of bio-surfactants within ionic liquid 1-ethyl-3-methylimidazolium bromide: A comparative study and potential application in antidepressants drug aggregation.
    Banjare MK, Behera K, Kurrey R, Banjare RK, Satnami ML, Pandey S, Ghosh KK.
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun 15; 199():376-386. PubMed ID: 29635182
    [Abstract] [Full Text] [Related]

  • 20. Spectral-fluorescent study of the interaction of polymethine dye probes with biological surfactants - bile salts.
    Tatikolov AS, Pronkin PG, Panova IG.
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun 05; 216():190-201. PubMed ID: 30901704
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.