These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
349 related items for PubMed ID: 19726175
1. Novel glass microprobe arrays for neural recording. Lin CW, Lee YT, Chang CW, Hsu WL, Chang YC, Fang W. Biosens Bioelectron; 2009 Oct 15; 25(2):475-81. PubMed ID: 19726175 [Abstract] [Full Text] [Related]
2. Micro-multi-probe electrode array to measure neural signals. Chen CH, Yao DJ, Tseng SH, Lu SW, Chiao CC, Yeh SR. Biosens Bioelectron; 2009 Mar 15; 24(7):1911-7. PubMed ID: 19027284 [Abstract] [Full Text] [Related]
3. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays. Krause G, Lehmann S, Lehmann M, Freund I, Schreiber E, Baumann W. Biosens Bioelectron; 2006 Jan 15; 21(7):1272-82. PubMed ID: 16006112 [Abstract] [Full Text] [Related]
4. Integration of silicon-via electrodes with different recording characteristics on a glass microprobe using a glass reflowing process. Lee YT, Yeh SR, Chang YC, Fang W. Biosens Bioelectron; 2011 Aug 15; 26(12):4739-46. PubMed ID: 21696942 [Abstract] [Full Text] [Related]
5. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP. IEEE Trans Neural Syst Rehabil Eng; 2005 Dec 15; 13(4):524-41. PubMed ID: 16425835 [Abstract] [Full Text] [Related]
6. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics. Charvet G, Rousseau L, Billoint O, Gharbi S, Rostaing JP, Joucla S, Trevisiol M, Bourgerette A, Chauvet P, Moulin C, Goy F, Mercier B, Colin M, Spirkovitch S, Fanet H, Meyrand P, Guillemaud R, Yvert B. Biosens Bioelectron; 2010 Apr 15; 25(8):1889-96. PubMed ID: 20106652 [Abstract] [Full Text] [Related]
7. Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor-liquid-solid growth. Kawano T, Harimoto T, Ishihara A, Takei K, Kawashima T, Usui S, Ishida M. Biosens Bioelectron; 2010 Mar 15; 25(7):1809-15. PubMed ID: 20089393 [Abstract] [Full Text] [Related]
8. Flexible carbon nanotubes electrode for neural recording. Lin CM, Lee YT, Yeh SR, Fang W. Biosens Bioelectron; 2009 May 15; 24(9):2791-7. PubMed ID: 19272765 [Abstract] [Full Text] [Related]
9. A cone-shaped 3D carbon nanotube probe for neural recording. Su HC, Lin CM, Yen SJ, Chen YC, Chen CH, Yeh SR, Fang W, Chen H, Yao DJ, Chang YC, Yew TR. Biosens Bioelectron; 2010 Sep 15; 26(1):220-7. PubMed ID: 20685101 [Abstract] [Full Text] [Related]
10. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Morin F, Nishimura N, Griscom L, Lepioufle B, Fujita H, Takamura Y, Tamiya E. Biosens Bioelectron; 2006 Jan 15; 21(7):1093-100. PubMed ID: 15961304 [Abstract] [Full Text] [Related]
11. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. Vetter RJ, Williams JC, Hetke JF, Nunamaker EA, Kipke DR. IEEE Trans Biomed Eng; 2004 Jun 15; 51(6):896-904. PubMed ID: 15188856 [Abstract] [Full Text] [Related]
12. Oligopeptide-modified silicon nanowire arrays as multichannel metal ion sensors. Bi X, Agarwal A, Yang KL. Biosens Bioelectron; 2009 Jul 15; 24(11):3248-51. PubMed ID: 19443202 [Abstract] [Full Text] [Related]
13. Multifunctional microelectrode array (mMEA) chip for neural-electrical and neural-chemical interfaces: characterization of comb interdigitated electrode towards dopamine detection. Chuang MC, Lai HY, Annie Ho JA, Chen YY. Biosens Bioelectron; 2013 Mar 15; 41():602-7. PubMed ID: 23083904 [Abstract] [Full Text] [Related]
14. A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation. Chen CH, Chuang SC, Su HC, Hsu WL, Yew TR, Chang YC, Yeh SR, Yao DJ. Lab Chip; 2011 May 07; 11(9):1647-55. PubMed ID: 21448485 [Abstract] [Full Text] [Related]
15. A high-yield fabrication process for silicon neural probes. Oh SJ, Song JK, Kim JW, Kim SJ. IEEE Trans Biomed Eng; 2006 Feb 07; 53(2):351-4. PubMed ID: 16485767 [Abstract] [Full Text] [Related]
16. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel. Lee K, He J, Clement R, Massia S, Kim B. Biosens Bioelectron; 2004 Sep 15; 20(2):404-7. PubMed ID: 15308247 [Abstract] [Full Text] [Related]
17. A CMOS neuroelectronic interface based on two-dimensional transistor arrays with monolithically-integrated circuitry. Chang CH, Chang SR, Lin JS, Lee YT, Yeh SR, Chen H. Biosens Bioelectron; 2009 Feb 15; 24(6):1757-64. PubMed ID: 18951013 [Abstract] [Full Text] [Related]
18. Wafer-bonded 2-D CMUT arrays incorporating through-wafer trench-isolated interconnects with a supporting frame. Zhuang X, Wygant IO, Lin DS, Kupnik M, Oralkan O, Khuri-Yakub BT. IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan 15; 56(1):182-92. PubMed ID: 19213645 [Abstract] [Full Text] [Related]
19. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. Chen YY, Lai HY, Lin SH, Cho CW, Chao WH, Liao CH, Tsang S, Chen YF, Lin SY. J Neurosci Methods; 2009 Aug 30; 182(1):6-16. PubMed ID: 19467262 [Abstract] [Full Text] [Related]
20. Microelectrode array fabrication by electrical discharge machining and chemical etching. Fofonoff TA, Martel SM, Hatsopoulos NG, Donoghue JP, Hunter IW. IEEE Trans Biomed Eng; 2004 Jun 30; 51(6):890-5. PubMed ID: 15188855 [Abstract] [Full Text] [Related] Page: [Next] [New Search]