These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
281 related items for PubMed ID: 19728107
1. Metabolic evolution of non-transgenic Escherichia coli SZ420 for enhanced homoethanol fermentation from xylose. Chen K, Iverson AG, Garza EA, Grayburn WS, Zhou S. Biotechnol Lett; 2010 Jan; 32(1):87-96. PubMed ID: 19728107 [Abstract] [Full Text] [Related]
2. Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose. Wang Y, Manow R, Finan C, Wang J, Garza E, Zhou S. J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1371-7. PubMed ID: 21188614 [Abstract] [Full Text] [Related]
3. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Zhou S, Iverson AG, Grayburn WS. Biotechnol Lett; 2008 Feb; 30(2):335-42. PubMed ID: 17957344 [Abstract] [Full Text] [Related]
4. Partial deletion of rng (RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenic Escherichia coli RM10. Manow R, Wang J, Wang Y, Zhao J, Garza E, Iverson A, Finan C, Grayburn S, Zhou S. J Ind Microbiol Biotechnol; 2012 Jul; 39(7):977-85. PubMed ID: 22374228 [Abstract] [Full Text] [Related]
5. Expression of acetaldehyde dehydrogenase (aldB) improved ethanol production from xylose by the ethanologenic Escherichia coli RM10. Manow R, Wang C, Garza E, Zhao X, Wang J, Grayburn S, Zhou S. World J Microbiol Biotechnol; 2020 Mar 31; 36(4):59. PubMed ID: 32236784 [Abstract] [Full Text] [Related]
6. [Production of L-lactic acid from pentose by a genetically engineered Escherichia coli]. Zhao J, Xu L, Wang Y, Zhao X, Wang J. Wei Sheng Wu Xue Bao; 2013 Apr 04; 53(4):328-37. PubMed ID: 23858707 [Abstract] [Full Text] [Related]
7. Increasing reducing power output (NADH) of glucose catabolism for reduction of xylose to xylitol by genetically engineered Escherichia coli AI05. Iverson A, Garza E, Zhao J, Wang Y, Zhao X, Wang J, Manow R, Zhou S. World J Microbiol Biotechnol; 2013 Jul 04; 29(7):1225-32. PubMed ID: 23435875 [Abstract] [Full Text] [Related]
8. Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 Is limited by pyruvate decarboxylase. Huerta-Beristain G, Utrilla J, Hernández-Chávez G, Bolívar F, Gosset G, Martinez A. J Mol Microbiol Biotechnol; 2008 Jul 04; 15(1):55-64. PubMed ID: 18349551 [Abstract] [Full Text] [Related]
9. Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11. Okuda N, Ninomiya K, Takao M, Katakura Y, Shioya S. J Biosci Bioeng; 2007 Apr 04; 103(4):350-7. PubMed ID: 17502277 [Abstract] [Full Text] [Related]
10. Ethanol production from corn cob hydrolysates by Escherichia coli KO11. de Carvalho Lima KG, Takahashi CM, Alterthum F. J Ind Microbiol Biotechnol; 2002 Sep 04; 29(3):124-8. PubMed ID: 12242633 [Abstract] [Full Text] [Related]
11. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. Biotechnol Bioeng; 2008 Aug 15; 100(6):1122-31. PubMed ID: 18383076 [Abstract] [Full Text] [Related]
12. Modulation of endogenous pathways enhances bioethanol yield and productivity in Escherichia coli. Munjal N, Mattam AJ, Pramanik D, Srivastava PS, Yazdani SS. Microb Cell Fact; 2012 Nov 04; 11():145. PubMed ID: 23122330 [Abstract] [Full Text] [Related]
13. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Hanly TJ, Henson MA. Biotechnol Bioeng; 2011 Feb 04; 108(2):376-85. PubMed ID: 20882517 [Abstract] [Full Text] [Related]
14. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Kim Y, Ingram LO, Shanmugam KT. Appl Environ Microbiol; 2007 Mar 04; 73(6):1766-71. PubMed ID: 17259366 [Abstract] [Full Text] [Related]
15. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Roca C, Olsson L. Appl Microbiol Biotechnol; 2003 Jan 04; 60(5):560-3. PubMed ID: 12536256 [Abstract] [Full Text] [Related]
16. [Metabolic engineering for microbial production of ethanol from xylose: a review]. Zhang Y, Ma R, Hong H, Zhang W, Chen M, Lu W. Sheng Wu Gong Cheng Xue Bao; 2010 Oct 04; 26(10):1436-43. PubMed ID: 21218632 [Abstract] [Full Text] [Related]
17. An ethanol-tolerant recombinant Escherichia coli expressing Zymomonas mobilis pdc and adhB genes for enhanced ethanol production from xylose. Wang Z, Chen M, Xu Y, Li S, Lu W, Ping S, Zhang W, Lin M. Biotechnol Lett; 2008 Apr 04; 30(4):657-63. PubMed ID: 18034308 [Abstract] [Full Text] [Related]
18. Co-expression of phosphoenolpyruvate carboxykinase and nicotinic acid phosphoribosyltransferase for succinate production in engineered Escherichia coli. Jiang M, Chen X, Liang L, Liu R, Wan Q, Wu M, Zhang H, Ma J, Chen K, Ouyang P. Enzyme Microb Technol; 2014 Mar 05; 56():8-14. PubMed ID: 24564896 [Abstract] [Full Text] [Related]
19. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Saitoh S, Hasunuma T, Tanaka T, Kondo A. Appl Microbiol Biotechnol; 2010 Aug 05; 87(5):1975-82. PubMed ID: 20552354 [Abstract] [Full Text] [Related]
20. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli. Liu R, Liang L, Chen K, Ma J, Jiang M, Wei P, Ouyang P. Appl Microbiol Biotechnol; 2012 May 05; 94(4):959-68. PubMed ID: 22294432 [Abstract] [Full Text] [Related] Page: [Next] [New Search]